О влиянии вакансий в подрешетках кремния и углерода на формирование барьера Шоттки на контакте металл–SiC

© С.Ю. Давыдов[¶], О.В. Посредник*

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия * Санкт-Петербургский государственный электротехнический университет (ЛЭТИ), 197376 Санкт-Петербург, Россия

(Получена 19 мая 2005 г. Принята к печати 5 июля 2005 г.)

В приближении поверхностной молекулы рассмотрено взаимодействие уровней кремниевых и углеродных вакансий с состояниями металла. Показано, что определяющая роль кремниевых вакансий в формировании барьера Шоттки на контакте Cr–SiC объясняется высокой плотностью состояний на антисвязывающем уровне.

PACS: 73.30.+y, 71.20.Nr

Хорошо известно, что кристаллы карбида кремния образуют большое число политипов, отличающихся друг от друга соотношением кубических N_c и гексагональных N_h узлов, что может быть охарактеризовано степенью гексагональности $D = N_h/(N_c + N_h)$ [1]. В настоящее время установлено [1-3], что отношение Si/C меняется от политипа к политипу, а именно уменьшается с увеличением D и составляет 1.046, 1.022 и 1.001 для политипов 3C, 6H и 4H соответственно. Логично предположить, что изменение концентрации углеродных [V_C] и кремниевых [V_{Si}] вакансий должно влиять на характеристики контактов SiC с металлами. Действительно, в работе [4] было обнаружено, что на контакте хрома с различными политипами SiC высота барьера Шоттки Φ_{h}^{n} растет с увеличением *D*. В работе [5] анализ экспериментальных данных [4] был проведен на основе модели поверхностного дефекта [6-8], в рамках которой рассматривается взаимодействие локального уровня дефекта, лежащего в запрещенной зоне полупроводника, с континуумом металлических состояний. Анализ показал, что величина Φ_h^n пропорциональна концентрации $[V_{\rm Si}]$. Так как $[V_{\rm Si}] \propto D$ [3], выводы работ [4] и [5], по сути, совпадают (см. подробнее Приложение I).

Возникает, однако, вопрос, почему именно кремниевые вакансии играют определяющую роль. Имеет место также и чисто теоретическая проблема. Модель поверхностного дефекта [5-8] основана на использовании гамильтониана Андерсона-Ньюнса [9] в приближении бесконечно широкой зоны проводимости металла и аналогична соответствующим моделям теории адсорбции. В такой аппроксимации уровень дефекта E_d не испытывает сдвига за счет гибридизации с состояниями металла. Известно, однако, что учет конечности ширины зоны весьма существенно сказывается на электронном спектре системы, вызывая не только сдвиг E_d, но и его расщепление на состояния связь-антисвязь [10] (см. Приложение ІІ). Ясно, что такая трансформация уровня E_d весьма существенна для моделей [5–8], предполагающих, что лишь состояния, лежащие в запрещенной зоне полупроводника, играют роль при формировании барьера Шоттки.

В предельном случае зону проводимости металла можно аппроксимировать одним локальным уровнем E_M и рассматривать взаимодействие этого уровня с дефектным состоянием E_d , что полностью аналогично так называемой поверхностной молекуле в теории адсорбции [11]. В настоящей работе мы используем именно это приближение. В применении к задаче о барьере Шоттки модель поверхностной молекулы впервые была использована в работе [12].

Рассмотрим простую задачу о взаимодействии уровня вакансии E_V с уровнем металла E_M . Если потенциал взаимодействия равен V, то результирующие уровни системы $\omega_{1,2}$ даются выражением

$$\omega_{1,2} = \frac{1}{2} \left[(E_V + E_M) \pm R \right],$$

$$R \equiv \sqrt{\Delta + 4V^2}, \quad \Delta \equiv E_V - E_M. \tag{1}$$

Здесь $\omega_{1,2}$ отвечает соответственно антисвязывающему и связывающему состояниям. Энергетические плотности состояний на уровне вакансии ρ_V и металлическом атоме ρ_M равны:

$$\rho_{V,M}(\omega) = \frac{1}{2} \Big[A_{1V,M} \delta(\omega - \omega_1) + A_{2V,M} \delta(\omega - \omega_2) \Big],$$
$$A_{1,2V} = 1 \pm \Delta/2R, \quad A_{1,2M} = 1 \mp \Delta/2R, \quad (2)$$

где ω — энергия, $\delta(...)$ — δ -функция Дирака. Оценим положение уровня вакансии в кремниевой $E_V(Si)$ и углеродной $E_V(C)$ подрешетках по энергии $|sp^3\rangle$ орбитали, центрированной соответственно на атоме кремния или углерода. При этом мы пренебрегаем расщеплением вакансионного уровня (частичным снятием вырождения), возникающим из-за взаимодействия вторых соседей [13]. Воспользовавшись методом связывающих орбиталей (МСО) Харрисона [14,15] и энергетическими термами, приведенными там же, получим $E_V(Si) = -9.39$ эВ и $E_V(C) = -13.15$ эВ (энергия отсчитывается от уровня

[¶] E-mail: Sergei.Davydov@mail.ioffe.ru

вакуума). Отметим, что, как и в работе [16], энергия $4s^1$ состояния атома хрома E_M принималась равной взятой с отрицательным знаком энергии ионизации I = 6.766 эВ ("адсорбционное" приближение) [17].

Для нахождения матричного элемента V вновь воспользуемся МСО, считая V равным ковалентной энергии V_2 в обозначениях Харрисона [14,15]. Тогда получим (см. [12,16]):

$$V = (V_{ss\sigma} - \sqrt{3}V_{sp\sigma})/2, \tag{3}$$

где $V_{ss\sigma}(V_{sp\sigma})$ — матричные элементы σ -взаимодействия $|s\rangle$ орбитали металлического атома и s(p)-компоненты $|sp^3\rangle$ орбитали атома кремния или углерода. Величина $V_{ss\sigma}, V_{sp\sigma} \propto d^{-2}$, где d — расстояние между непосредственно контактирующими атомами кремния или углерода и атомом хрома. В качестве d выберем среднее арифметическое расстояние между ближайшими атомами Si и C (1.88 Å [14]) и атомами хрома (2.50 Å [18]) в массивных образцах. Тогда d = 2.19 Å и V = 3 эВ.

Подставляя найденные значения параметров в выражения (1) и (2), получим:

1) вакансия в подрешетке кремния

$$\omega_1 = -4.80 \, \mathfrak{sB}, \quad A_{1V} = 0.30,$$

 $\omega_2 = -13.23 \, \mathfrak{sB}, \quad A_{2V} = 0.70;$ (4)

2) вакансия в подрешетке углерода

$$\omega_1 = -5.58 \, \Im B, \quad A_{1V} = 0.14,$$

 $\omega_2 = -14.34 \, \Im B, \quad A_{2V} = 0.86.$ (5)

Так как сродство к электрону χ кристаллов SiC по разным данным колеблется в пределах 3.5-4.4 эВ [5,19], уровни ω₁ кремниевой и углеродной вакансий попадают в запрещенную зону, тогда как уровни ω_2 перекрываются с валентной зоной. Следовательно, в соответствии с моделью поверхностного дефекта [5] именно уровни ω_1 влияют на формирование барьера Шоттки. Вероятность перехода электрона с уровня металла на уровень вакансии пропорциональна произведению $\Sigma \equiv \rho_{iV} \rho_{iM} = \rho_{iV} (1 - \rho_{iV}), (i = 1, 2).$ Тогда для кремниевой вакансии Σ = 0.21, а для вакансии в углеродной подрешетке $\Sigma = 0.12$. Поэтому логично предположить, что уровень Ферми системы будет "прикрепляться" к уровню ω_1 кремниевой вакансии (пиннинг). Именно поэтому концентрация [V_{Si}] и определяет свойства контакта Cr-политипы SiC. Отметим также разумное согласие полученного здесь (в соответствии с (4)) числа заполнения уровня вакансии n = 0.3 с принятым в [5] значением n = 0.5.

В проведенном выше расчете мы полагали $E_M = -I$, что отвечает "адсорбционному" приближению к расчету высоты барьера Шоттки. Рассмотрим "твердотельное" приближение, положив $E_M = -\phi$, где ϕ — работа выхода металла, равная для поликристаллического хрома 4.58 эВ [17] (здесь, таким образом, рассматривается взаимодействие уровня вакансии с уровнем Ферми

4 Физика и техника полупроводников, 2006, том 40, вып. 3

металла). Тогда получим для вакансии в подрешетке кремния $\omega_1 = -3.26$ эВ, $A_{1V} = 0.19$, $\omega_2 = -10.95$ эВ, $A_{2V} = 0.81$, а для вакансии в подрешетке углерода $\omega_1 = -3.63$ эВ, $A_{1V} = 0.09$, $\omega_2 = -14.10$ эВ, $A_{2V} = 0.91$. Так как $\chi = 3.5 - 4.4$ эВ, уровни ω_1 могут перекрываться с зоной проводимости полупроводника, превращаясь тем самым в резонансные квазиуровни, и, сторого говоря, модель поверхностного дефекта в этом случае неприменима. Отметим, однако, что и здесь плотность состояний на кремниевой вакансии в 2 раза больше, чем на углеродной. При этом для кремниевой вакансии $\Sigma = 0.15$, а для углеродной $\sigma = 0.08$. Следовательно, и в этом случае доминирующую роль в формировании характеристик барьера Шоттки будет играть кремниевая вакансия.

Работа выполнена при частичной поддержке гранта РФФИ № 04-02-16632.

Приложение І

Здесь следует обсудить один важный момент. Авторы работы [4], основываясь на модели поверхностной вакансии [20], предполагали, что не кремниевые, а углеродные вакансии ответственны за зависимость высоты барьера Шоттки от степени гексагональности. Однако из современных данных (см. таблицу в [3]) о связи политипизма SiC с собственными дефектами следует, что рост концентрации именно кремниевых вакансий $[V_{\rm Si}]$ совпадает с ростом степени гексагональности D, тогда как увеличение $[V_{\rm C}]$ приводит к уменьшению D. В работе [5] в рамках обобщенной модели Людеке [6-8] и с использованием экспериментальных значений высоты барьера Шоттки Φ_h^n было показано, что концентрация модельных дефектов N_d пропорциональна концентрации кремниевых вакансий на поверхности политипов карбида кремния $[V_{\rm Si}]^S$, на основании чего был сделан вывод о том, что дефект модели Людеке как раз и соответствует кремниевой вакансии, а соответствующий уровень вакансии изначально (до контакта с металлом) пуст, т.е. является акцептором. Наличие таких уровней у кремниевых вакансий подтверждается результатами расчетов [21,22]. Предложенная модель была проверена также в самосогласованных расчетах для систем Ag, Au/3C-, 6H-SiC [23]. Таким образом, за пропорциональность Φ_{h}^{n} степени гексагональности ответственны именно кремниевые вакансии на поверхности политипов SiC.

Приложение ІІ

Без учета корреляции бесспиновый гамильтониан Андерсона–Ньюнса H, описывающий взаимодействие уровня дефекта (или адатома) *E*_d с континуумом состояний *є*_{*k*} зоны проводимости металла, имеет вид

$$\mathrm{H} = \sum_k arepsilon_k c_k^+ c_k + E_d d^+ d + \sum_k (V_{kd} c_k^+ d + h.c.),$$

где $c_k^+(c_k)$ — оператор рождения (уничтожения) электрона в состоянии $|k\rangle$ с энергией ε_k , $d^+(d)$ — оператор рождения (уничтожения) электрона в состоянии $|d\rangle$ с энергией E_d , V_{kd} — матричный элемент взаимодействия между $|k\rangle$ и $|d\rangle$ состояниями, *h.c.* означает эрмитово сопряжение. Рассмотрим два предельных случая: 1) $V_{kd} = V$ и не зависит от значения квазиволнового вектора **k** (т.е. матричный элемент V_{kd} одинаков для любого состояния зоны проводимости), причем $V/W \ll 1$, где W — ширина зоны проводимости металла; 2) $V_{kd} = V \cdot \delta(\mathbf{k} - \mathbf{k}_0)$, причем $V/W \gg 1$.

Первый случай отвечает приближению бесконечно широкой зоны [24,25], в рамках которого в системе реализуется одно квазилокальное (резонансное) состояние с энергией $\omega^* \approx E_d$ и полушириной $\Gamma = \pi V^2 \rho_m$, где плотность состояний металла $\rho_m = 2/W$. Такое приближение, отвечающее слабой связи между дефектом и матрицей, было и использовано в моделях барьера Шоттки [6–8].

Во втором случае в системе реализуются два локальных состояния $\omega_{1,2}$, лежащие соответственно выше и ниже зоны проводимости металла и определяемые уравнением (1), где вместо E_V стоит E_d , а вместо $E_M - \varepsilon_{k_0}$. Это случай сильной связи, именуемый в теории адсорбции приближением поверхностной молекулы. Такой подход для расчета высоты барьера Шоттки использовался в работах [12,16]. Отметим, что в работе [9] в пределе сильной связи полагали $V^2 = \sum_k |V_{kd}|^2$, а $\varepsilon_{k_0} = \varepsilon_c$, где ε_c — энергия центра зоны проводимости металла. Мы здесь принимаем энергию ε_{k_0} равной энергии верхнего заполненного уровня металла E_M , так как рассматриваем переход электрона с металла на незаполненный уровень вакансии E_V . Матричный элемент V рассматриваем по методу Харрисона.

Список литературы

- [1] Н.Д. Сорокин, Ю.М. Таиров, В.Ф. Цветков, М.А. Чернов. Кристаллография, **28** (5), 910 (1983).
- [2] Ю.А. Водаков, Г.А. Ломакина, Е.Н. Мохов. ФТТ, 24 (5), 1377 (1983).
- [3] А.А. Лебедев. ФТП, 33 (7), 769 (1999).
- [4] Р.Г. Веренчикова, В.И. Санкин, Е.И. Радованова. ФТП, 17 (10), 1757 (1983).
- [5] С.Ю. Давыдов, А.А. Лебедев, О.В. Посредник, Ю.М. Таиров. ФТП, **32** (12), 1437 (2001).
- [6] R. Ludeke, G. Jezequel, A. Tabel-Ibrahimi. Phys. Rev. Lett., 61 (5), 601 (1989).
- [7] R. Ludeke. Phys. Rev. B, 40 (3), 1947 (1989).
- [8] С.Ю. Давыдов, А.А. Лебедев, С.К. Тихонов. ФТП, 31 (5), 597 (1997).
- [9] D.M. Newns. Phys. Rev., **178** (1), 1123 (1969).
- [10] С.Ю. Давыдов. ЖТФ, **68** (4), 15 (1998).

- [11] Теория хемосорбции, под ред. Дж. Смит (М., Мир, 1983).
- [12] W. Mönch. Europhys. Lett., 7 (3), 275 (1989).
- [13] М. Ланно, Ж. Бургуэн. Точечные дефекты в полупроводниках. Теория (М., Мир, 1984).
- [14] Н. Харрисон. Электронная структура и свойства твердых тел (М., Мир, 1983) т. 1.
- [15] W.A. Harrison. Phys. Rev. B, **31** (4), 2121 (1985).
- [16] С.Ю. Давыдов, С.К. Тихонов. ФТТ, 37 (9), 2749 (1995).
- [17] Физические величины. Справочник, под ред. И.С. Григорьева и Е.З. Мейлихова (М., Энергоатомиздат, 1991).
- [18] Ч. Киттель. Введение в физику твердого тела (М., Наука, 1978).
- [19] А.А. Лебедев, А.М. Стрельчук, Д.В. Давыдов, Н.С. Савкина, А.Н. Кузнецов, Л.М. Сорокин. Письма ЖТФ, 28 (18), 89 (2002).
- [20] M.S. Daw, D.L. Smith. Phys. Rev. B, 20 (12), 5150 (1979).
- [21] P. Deak, A. Gali, J. Miro, R. Guiterrez, A. Sieck, Th. Frauenhaim. Mater. Sci. Forum (Trans. Tech. Publications. Switzerland), 264–268, 279 (1998).
- [22] F. Bechstedt, A. Fissel, J. Furtmüller, U. Grossner, A. Zywietz. J. Phys.: Condens. Matter, 13, 9027 (2001).
- [23] С.Ю. Давыдов, А.А. Лебедев, О.В. Посредник, Ю.М. Таиров. ФТП, 36 (6), 690 (2002).
- [24] P.W. Anderson. Phys. Rev., **124** (1), 41 (1961).
- [25] Ч. Киттель. Квантовая теория твердых тел (М., Наука, 1967).

Редактор Л.В. Беляков

On the vacancy influence in sublattices of silicon and carbon and the Schottky barrier formation at the metal–SiC contact

S.Yu. Davydov, O.V. Posrednic*

A.F. loffe Physicotechnical Institute,
Russian Academy of Sciences,
194021 St. Petersburg, Russia
* St. Petersburg Electrotechnical University,
197376 St. Petersburg, Russia

Abstract In approximation of a surface molecule considered is the interaction of the levels of silicon and carbon vacancies with metal states. Shown is the determining role of the states at the Cr–SiC contact.