Механизмы проводимости магнитных полупроводников со структурой граната в зависимости от концентрации иновалентной примеси

© М.Ф. Булатов, Ю.Н. Пархоменко*

Астраханский государственный университет, 414025 Астрахань, Россия

* Московский государственный институт стали и сплавов (Технологический университет),

117936 Москва, Россия

(Получена 11 июля 2005 г. Принята к печати 25 июля 2005 г.)

Предложена последовательность смены состояний катионных и анионных подрешеток в системе $(TmBiCa)_3(FeGa)_5O_{12}$, выращенных методом жидкофазной эпитаксии на подложках из $Gd_3Ga_5O_{12}$ ориентации [111], при изменении концентрации кальция. Существуют критические значения двухвалентной примеси: при малых концентрациях (примерно до 0.2 ат %) образуются Fe^{4+} ; при промежуточных концентрациях (0.25–0.3 ат %) возникают анионные вакансии, далее появляются однозарядные ионы кислорода.

PACS: 72.20.Fr, 72.80.Jc

Как известно [1,2], в зависимости от типа и концентрации иновалентных примесей, а также от условий синтеза в оксидных системах, содержащих катионы переменной валентности, имеют место различные механизмы зарядовой компенсации и соответственно проводимости. В феррогранатах, относящихся к классу узкозонных магнитных полупроводников с низкой подвижностью носителей тока [3], компенсация катионов пониженной валентности (Ca²⁺, Pb²⁺ и др.) осуществляется либо ионами Fe⁴⁺, либо анионными вакансиями, либо однозарядными ионами кислорода [1,2,4–7]. Критерии и границы областей действия указанных механизмов и природы проводимости при наличии ионов O⁻ не установлены.

В настоящей работе предпринята попытка определить последовательность смены механизмов проводимости, определяемых состояниями катионной и анионной подрешеток, в системе (TmBiCa)₃(FeGa)₅O₁₂ при изменении концентрации кальция.

Экспериментальные образцы монокристаллических пленок были выращены методом жидкофазной эпитаксии из раствора гранатобразующих компонентов в расплаве растворителя Bi_2O_3 на подложках из гадолиний-галлиевого граната ориентации [111]. Переохлаждение составляло 45–50°С. Содержание элементов задавалось таким образом, чтобы с увеличением количества кальция параметр кристаллической решетки оставался практически неизменным и близким к параметру решетки подложки (1.2383 нм). Это позволило минимизировать влияние напряжений несоответствия. Состав образцов определялся методом электронно-зондового микроанализа. Оптические спектры пропускания снимались в диапазоне 185–800 нм на спектрофотометре Specord UV–VIS.

Составы пленок приведены в таблице. Содержание платины, обычно присутствующей в феррогранатовых пленках вследствие растворения тигля [2,5], не превышало 0.02 формульной единицы, поэтому компенсация Ca^{2+} ионами Pt^{4+} могла осуществляться только частично.

Температурные зависимости электросопротивления R(T) экспериментальных образцов для малых токов (в линейной области вольт-амперных характеристик) приведены на рис. 1. Изломы на кривых коррелируют со значениями температуры Кюри, определенными по исчезновению доменной структуры. Зависимости энергии активации E_a от содержания кальция для областей ниже и выше температуры Кюри приведены на рис. 2, 3. Экстремумы приведенных зависимостей находятся вблизи значений концентрации кальция 0.26 и 0.35 ат %. Согласно результатам измерения термоэдс, образцы 1 и 2 (концентрация Са 0.05 и 0.17 ат %) имели дырочную проводимость, остальные — электронную.

С учетом характера проводимости и величины энергии активации, а также данных рентгеновской фотоэлектронной спектроскопии и конверсионной мессбауэровской спектроскопии можно предположить, что в образцах 1 и 2 присутствуют ионы Fe^{4+} (не исключается также наличие катионных вакансий, являющихся акцепторами [2]). Смена знака носителей заряда в образце 3 обусловлена возникновением анионных вакансий, компенсирующих увеличенное количество Ca^{2+} и

Результаты рентгеноспектрального микроанализа: содержание элементов в ат%

Образец	Tm	Bi	Ca	Fe	Ga
1	11.25	3.56	0.05	17.67	6.73
2	11.11	3.74	0.17	17.67	6.74
3	10.92	3.50	0.26	17.41	6.57
4	10.91	3.61	0.35	16.63	7.50
5	10.54	3.72	0.42	16.60	7.48
6	10.64	3.71	0.42	16.75	7.49
7	10.33	3.87	0.46	16.58	7.30

являющихся донорами [2]. При дальнейшем возрастании содержания кальция вступает в действие механизм зарядовой компенсации [5–7], обусловленный появлением однозарядных анионов кислорода О⁻, что приводит сначала к падению проводимости, а затем к монотонному ее нарастанию. Приведенные предположения подтверждаются анализом спектров пропускания образцов, приведенных на рис. 4.

В образцах 1 и 2 велика концентрация ионов Fe⁴⁺, что сопровождается наличием полос поглощения в области 650-800 нм. В образце 4 появляется окно прозрачности в области 470-700 нм, которое, по-видимому, можно приписать появлению качественно новых образований — однозарядных ионов кислорода и эффекту компенсации.

Таким образом, в гранатобразующих твердых растворах существуют критические значения концентрации двухвалентной примеси, при которых происходит смена

Рис. 1. Температурная зависимость электросопротивления. Номера кривых соответствуют номерам образцов.

Рис. 2. Зависимость энергии активации от содержания кальция для температур ниже точки Кюри.

Рис. 3. Зависимость энергии активации от содержания кальция для температур выше точки Кюри.

Рис. 4. Спектры пропускания магнитных пленок ферритгранатов. Номера кривых соответствуют номерам образцов.

механизма проводимости на основе изменения природы зарядовой компенсации: при малых концентрациях двухвалентной примеси (примерно до $0.2 \, {\rm at} \, \%$) образуются ионы Fe⁴⁺; при промежуточных концентрациях ($0.25-0.3 \, {\rm at} \, \%$) возникают анионные вакансии, далее появляются однозарядные ионы кислорода.

Строго говоря, полученные данные не отрицают возможность сосуществования различных механизмов зарядовой компенсации и проводимости, а свидетельствуют о включении новых механизмов по мере изменения концентрации кальция и преобладании одного из них.

Список литературы

- [1] В.В. Рандошкин, А.Я. Червоненкис. Прикладная магнитооптика (М., Энергоатомиздат, 1990) с. 60.
- [2] A. Tucciarone, P. DeGasperis. Thin Sol. Films, **114**, 109 (1984).

- [3] С. Крупичко. Физика ферритов и родственных им магнитных окислов (М., Мир, 1976) т. 1, с. 118.
- [4] В.В. Рандошкин, А.Я. Червоненкис. ЖТФ, 55 (7), 1382 (1985).
- [5] W.H. de Roode, C.A.P.W. van de Pavert. J. Appl. Phys., 55 (8), 3115 (1984).
- [6] R. Metselaar, P.K. Larsen. Phys. Chem. Sol., 37, 599 (1976).
- [7] I. Avgin, D.L. Huber. J. Appl. Phys., 75 (10), 5517 (1994).

Редактор Л.В. Шаронова

Mechanisms of conductivity in magnetic semiconductors with structure of the Garnet with depending on concentration impurity of the variable valence

M.F. Bulatov, Yu.N. Parkhomenko*

Astrakhan State University, 414025 Astrakhan, Russia * Moscow State Institute of Steel and Alloys (Technological University), 117936 Moscow, Russia

Abstract The sequence change of conditions cationics and anionics sublattice in system $(\text{TmBiCa})_3(\text{FeGa})_5O_{12}$ grown epitaxially on the substrate $\text{Gd}_3\text{Ga}_5O_{12}$ from orientations [111] is offered at change of concentration calcium. There are critical values of a bivalent impurity: at small concentration (approximately up to 0.2 at %) are formed Fe⁴⁺; at an intermediate concentration (0.25–0.3 at %) arises anionics vacancies, then appear the O ions.