Фоточувствительность гетерофотоэлементов ZnO/CdS/Cu(In,Ga)Se₂ при *у*-облучении

© В.В. Емцев, Ю.А. Николаев, Д.С. Полоскин, В.Ю. Рудь*[¶], Ю.В. Рудь, Е.И. Теруков, М.В. Якушев⁺

Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

* Санкт-Петербургский государственный политехнический университет,

195251 Санкт-Петербург, Россия

⁺ Strathclyde University,

G 40 NG, Glasgow, UK

(Получена 6 мая 2005 г. Принята к печати 12 мая 2005 г.)

Исследовано влияние γ -облучения (Co⁶⁰) на фотопреобразование тонкопленочных гетерофотоэлементов ZnO/CdS/Cu(In, Ga)Se₂ в естественном и линейно поляризованном излучении. Показано, что проникающее γ -облучение структур при комнатной температуре практические не оказывает влияния на фотоэлектрические параметры тонкопленочных гетерофотоэлементов вплоть до потоков $\Phi \approx 1.1 \cdot 10^{18}$ квант/см². Сделан вывод о возможностях использования гетерофотоэлементов ZnO/CdS/Cu(In, Ga)Se₂ в условиях высокого радиационного фона.

Вовлечение электронных аналогов бинарных соединений А^{II}В^{VI} — тройных алмазоподобных полупроводников А^IВ^{III}С^{VI} и их твердых растворов — в исследования и разрабоки тонкопленочных фотопреобразователей солнечного излучения обеспечило прорыв в этой актуальной области. Действительно, именно на тонкопленочных гетерофотоэлементах ZnO/CdS/Cu(In, Ga)Se₂ были установлены рекордные для этого типа фотопреобразователей значения квантовой эффективности (~ 19.2%) [1] и экстраординарная радиационная стойкость [2-5]. Природа последнего феномена до конца еще не выяснена и предположительно связывается с отжигом образующихся в Cu(In, Ga)Se₂ (CIGS) радиационных дефектов [2]. Поэтому изучение влияния облучения высокоэнергетическими частицами и жестким проникающим излучением на физические свойства полупроводников $A^{I}B^{III}C_{2}^{VI}$ и солнечных элементов на их основе в последнее время быстро расширяется. Настоящая работа принадлежит этому актуальному направлению и посвящена изучению влияния у-облучения на фотоэлектрические свойства тонкопленочных структур ZnO/CdS/CIGS как в естественном, так и в линейно поляризованном излучении.

Исследованные тонкопленочные солнечные элементы ZnO/CdS/CIGS площадью ~ 0.5 мм², схематическое изображение которых дано на рис. 1, были выращены в IPE (Stuttgart, Germany).¹ В исходном (до облучения) состоянии структуры ZnO/CdS/CIGS характеризовались квантовой эффективностью фотопреобразования $\eta^{in} \approx 13-14\%$ (AM 1.5) и напряжением холостого хода $U^{in} \approx 620$ мВ при T = 300 К. γ -облучение осуществлялось от источника Co⁶⁰ с интенсивностью ~ $3.2 \cdot 10^{11}$ фотон/см² · с, причем во время облучения структуры находились в нормальной среде, а их температура не превышала ~ 30° С. После облучения структур

в течение заданного времени производились измерения фотонапряжения холостого хода U^{ir} и тока короткого замыкания i^{ir} , спектров относительной квантовой эффективности фотопреобразования $\eta^{ir}(\hbar\omega)$ в естественном и линейно поляризованном излучении (ЛПИ), а также зависимости коэффициента наведенного фотоплеохроизма P_I , от угла падения θ и энергии падающих фотонов $\hbar\omega$.

На рис. 1 приведены типичные зависимости фотонапряжения холостого хода и тока короткого замыкания одного из солнечных элементов ZnO/CdS/CIGS от плотности потока Ф падающих на него γ -квантов. Видно, что в широком диапазоне изменения Ф вплоть до $\sim 1.1 \cdot 10^{18}$ квант/см² фотонапряжение холостого хода и ток короткого замыкания остаются практически неизменными. Это обстоятельство дает основания сделать вывод о том, что тонкопленочные солнечные гетерофотоэлементы ZnO/CdS/CIGS могут эксплуатироваться в условиях высоких потоков γ -излучения, когда в фото-

Рис. 1. Зависимости фотонапряжения холостого хода (1) и фототока короткого замыкания (2) гетерофотоэлемента ZnO/CdS/CIGS от дозы облучения γ -квантами при T = 300 K. На вставке — схематическое изображение структуры ZnO/CdS/CIGS.

[¶] E-mail: rudvas@spbstu.ru

¹ Авторы признательны проф. Н.W. Schock за предоставление структур ZnO/CdS/CIGS для исследований.

Фотоэлектрические	свойства	гетерофотоэлементов
ZnO/CdS/CIGS при ү-		

<i>D</i> , квант/см ²	$\hbar\omega^m$, эВ	δ , эВ	$S^*, \Im B^{-1}$	E_G , эВ	$P_I,\%~(\theta=70^\circ)$
0	1.6	1.46	58	1.12	10
$1.8\cdot 10^{17}$	1.6	1.44	77	1.12	9
$2.45\cdot10^{17}$	1.6	1.43	58	1.12	9
$1.1\cdot10^{18}$	1.6	1.44	46	1.12	6

преобразователях на основе широко используемых в полупроводниковой электронике Si и GaAs под влиянием проникающей радиации возникают необратимые изменения физических свойств и, как следствие, приборы на основе элементарных и бинарных полупроводников выходят из строя [6–8].

Слабое влияние облучения у-квантами на свойства гетерофотоэлементов ZnO/CdS/CIGS позволило провести детальные измерения спектров относительной квантовой эффективности фотопреобразования $\eta(\hbar\omega)$ в широкой области потоков у-квантов (рис. 2). Видно, что вплоть до потоков $\Phi = 1.1 \cdot 10^{18}\,\mathrm{kBaht}/\mathrm{cm}^2\,$ спектральный контур не только не претерпевает существенных изменений, но и сохраняет все его детали. Действительно, независимо от величины Φ рост η начинается с $\hbar \omega > 0.5$ эВ. Этот рост фоточувствительности до энергии фотонов $\hbar\omega \approx 1$ эВ происходит сравнительно медленно, и ему можно сопоставить крутизну $(\delta \ln \eta)/(\delta \hbar \omega) \approx 4-5$ эВ⁻¹, причем уровень фоточувствительности при $\hbar \omega < 1$ эВ слабо зависит от величины Ф. При $\hbar \omega > 1.04$ эВ в спектрах $\eta(\hbar \omega)$ наступает быстрый экспоненциальный рост фоточувствительности, которому можно сопоставить более высокую крутизну $S^* = 50 - 80 \, \mathrm{sB}^{-1}$ (см. таблицу), что характерно для прямых межзонных переходов в энергетическом спектре твердого раствора CuIn_{0.9}Ga_{0.1}Se₂. Из таблицы видно, что значения S* обнаруживают сложную зависимость от Ф и это может свидетельствовать о влиянии уоблучения на размытие краев свободных зон электрическими полями заряженных дефектов, которые определяют влияние переходов с участием хвостов плотности состояний.

Длинноволновый край $\eta(\hbar\omega)$ гетерофотоэлементов до и после облучения спрямляется в координатах $(\eta\hbar\omega)^2 = f(\hbar\omega)$ (рис. 2), что соответствует прямым межзонным оптическим переходам в четверных твердых растворах. Экстраполяция $(\eta \hbar \omega)^2 \rightarrow 0$ в соответствии с теорией межзонного поглощения [9] дает возможность определить ширину запрещенной зоны использованных при получении гетерофотоэлементов ZnO/CdS/CIGS твердых растворов CIGS $E_G = 1.12$ эВ при T = 300 К. Из таблицы видно, что значение $E_G = 1.12$ эВ при $T = 300 \, \text{K}$, определенное из спектров фотоактивного поглощения в гетерофотоэлементах, оказалось нечувствительным к потоку у-облучения Ф (см. таблицу) и всецело определяется атомным составом твердого раствора. Следовательно, можно предположить, что у-облучение не вызывает распада твердого раствора.

Из спектров $\eta(\hbar\omega)$ (рис. 2) хорошо видно, что в достаточно широком диапазоне энергий фотонов от 1.2 до 2.2 эВ величина фоточувствительности гетерофотоэлементов ZnO/CdS/CIGS сохраняется на высоком уровне и не зависит от потока у-квантов. Из спектров фоточувствительности (рис. 2) и таблицы также следует, что энергетическое положение абсолютного максимума фоточувствительности $\hbar \omega^m = 1.6$ эВ не зависит от потока у-излучения. Еще необходимо подчеркнуть, что отношение величины максимальной фоточувствительности в глубине фундаментального поглощения CIGS к фоточувствительности гетерофотоэлементов в области поглощения на точечных дефектах решетки в пленке CIGS оказалось очень высоким $(1-2) \cdot 10^4$ и, что особенно важно, это отношение практически не зависит от величины Ф вплоть до 1.1 · 10¹⁸ квант / см². Это обстоятельство позволяет высказать мнение о том, что в результате облучения гетерофотоэлементов уровень фотоактивного поглощения в CIGS с участием глубоких акцепторных центров с энергией активации $E_a \approx 0.5 - 0.6$ эВ и соот-

Рис. 2. Спектры относительной квантовой эффективности фотопреобразования гетерофотоэлемента ZnO/CdS/CIGS в зависимости от дозы облучения при T = 300 K (Φ , квант/см²: $I = 0, 2 = 1.8 \cdot 10^{17}, 3 = 2.45 \cdot 10^{17}, 4 = 1.1 \cdot 10^{18}$). Для исключения наложения спектры $\eta(\hbar\omega)$ смещены параллельно оси ординат. На вставке — зависимости ($\eta\hbar\omega$)² = $f(\hbar\omega)$. Обозначения у кривых те же, что и на основном рисунке.

Физика и техника полупроводников, 2005, том 39, вып. 12

ветственно их концентрация слабо зависят от потока γ -излучения. Подчеркнем, что это предположение согласуется с экспериментальными зависимостями U^{ir} и i^{ir} от Φ (рис. 1, кривые 1 и 2).

На коротковолновой части спектров $\eta(\hbar\omega)$ как необлученных (рис. 2, кривая 1), так и у-облученных (рис. 2, кривые 2-4) гетерофотоэлементов ZnO/CdS/CIGS, можно выделить также перегибы при $\hbar\omega_1 = 2.5 \, \mathrm{sB}$ и $\hbar\omega_2 = 3.1$ эВ, энергетическое положение которых по шкале энергий согласуется с шириной запрещенной зоны широкозонных пленок CdS и ZnO [10]. Это обстоятельство дает основание сопоставить указанные спектральные особенности с межзонным поглощением в указанных соединениях А^{II}В^{VI}. В таблице приведены также значения полной ширины спектров $\eta(\hbar\omega)$ на их полувысоте δ , которые достаточно высокие и практически не зависят от величины использованных потоков у-облучения. Тот факт, что высокая величина $\delta \approx 1.44$ эВ в исследованных гетерофотоэлементах практически нечувствительна к у-облучению, позволяет высказать также предположение относительно достаточно высокого качества интерфейса в исследованных гетерофотоэлементах.

При освещении гетерофотоэлементов ZnO/CdS/CIGS линейно поляризованным излучением во всей области их фоточувствительности в зависимостях квантовой эффективности фотопреобразования от угла падения θ в поляризациях, когда вектор электрического поля световой волны **E** параллелен (η^p) или перпендикулярен плоскости падения ЛПИ (η^s), обнаруживается максимум для обеих поляризаций при $\theta \neq 0$ (рис. 3, кривые 1 и 2). Согласно [11-13], эта особенность позволяет сделать вывод о том, что в тонкопленочном гетерофотоэлементе для излучений s- и p-поляризаций в peзультате интерференционного просветления достигается снижение потерь на отражение и по этой причине происходит одновременный рост η^s и η^p в окрестности псевдобрюстеровского угла (рис. 3, кривые 1 и 2). Угловая зависимость коэффициента наведенного фотоплехроизма, как видно из рис. 3 (кривые 3 и 4), подчиняется квадратичному закону $P_I \propto \theta^2$ во всем спектральном диапазоне фоточувствительности структур ZnO/CdS/CIGS. При этом, как видно из рис. 3, экспериментальные зависимости Р₁ от энергии фотонов как до, так и после у-облучения структур ZnO/CdS/CIGS γ -квантами (рис. 4, кривые 1-3) расположились значительно ниже, чем расчетная зависимость $P_I(\hbar\omega)$ (рис. 3, кривая 4). Обнаруженное понижение P_{I} относительно расчетной зависимости $P_I(\hbar\omega)$ свидетельствует о влиянии интерференционного просветления пленкой ZnO во всем диапазоне высокой фоточувствительности структур ZnO/CdS/CIGS. Критерием полного широкополосного просветления, согласно [13], является условие $P_I \equiv 0$. Следовательно, согласно данным исследований спектров $P_I(\hbar\omega)$, для дальнейшего повышения эффективности фотопреобразования необходимо разработать методику создания просветляющих пленок, при которых будет выполнено условие $P_I \equiv 0$. Кроме этого, из рис. 4 следует важный вывод о том, что сильное облучение этих структур γ -квантами до потоков $\Phi \approx 1.1 \cdot 10^{18}$ квант/см² не только не повышает, но, напротив, даже смещает экспериментальный спектр $P_I(\hbar\omega)$ в направлении $P_I \rightarrow 0$, что не противоречит зависимостям параметров U^{ir} и i^{ir} от Φ (рис. 1).

Таким образом, обнаружено, что фотонапряжение, фототок короткого замыкания и коэффициент наведенного фотоплеохроизма гетерофотоэлементов ZnO/CdS/ClGS при γ -облучении, вплоть до потоков $\Phi \approx 1.1 \cdot 10^{18}$ квант/см², сохраняются практически неизменными, что свидетельствует о высокой радиационной стойкости таких фотопреобразователей и демонстрирует возможности их использования в условиях жесткого проникающего излучения.

Рис. 3. Зависимости квантовой эффективности фотопреобразования $(1 - \eta^P, 2 - \eta^S)$ и коэффициента наведенного фотоплеохроизма $3 - P_I$, $4 - (P_I)^{1/2}$ от угла падения линейно поляризованного излучения на приемную плоскость ZnO гетерофотоэлемента ZnO/CdS/CIGS при T = 300 К. $\hbar\omega = 2.07$ эВ.

Рис. 4. Спектры коэффициента наведенного фотоплеохроизма гетерофотоэлемента ZnO/CdS/CIGS в зависимости от потока облучения γ -квантами при T = 300 К. (Ф, квант/см²: I = 0, $2 = 2.45 \cdot 10^{17}$, $3 = 1.1 \cdot 10^{18}$, 4 = расчет [13]. $\theta = 70^{\circ}$).

Работа поддержана грантом INTAS (проект № 2001-283) и программой ОФН "Новые принципы преобразования энергии в полупроводниковых структурах".

Список литературы

- O. Landberg, M. Edoff, L. Stolt. ISES 2003. Abstract Book. Solar World Congress. June 14–19, 2003 (Göteborg, Sweden, 2003) p. 57.
- [2] A. Jasenek, U. Rau, K. Weinert, I.M. Kotschau, G. Hanna, G. Voorwinden, M. Powalla, H.W. Shock, J.H. Werner. Thin Sol. Films, 287, 228 (2001).
- [3] A. Jasenek, U. Rau. J. Appl. Phys., 90, 650 (2001).
- [4] K.S. Ramajah, V.S. Raju, A.K. Bhatnagur, F.Sh. Juang, Y.K. Su. Mater. Lett., 45, 251 (2000).
- [5] T. Tanaka, T. Ohshima, S. Okada, A. Wakahara, A. Yoshida. J. Appl. Phys., **39**, 192 (2000).
- [6] В.С. Вавилов, Н.П. Кекелидзе, Л.С. Смирнов. Действие излучений на полупроводники (М., Наука, 1988).
- [7] Физические процессы в облученных полупроводниках, под ред. Л.С. Смирнова (Новосибирск, Наука, 1977).
- [8] Вопросы радиационной технологии полупроводников, под ред. Л.С. Смирнова (Новосибирск, Наука, 1980).
- [9] С. Зн. Физика полупроводниковых приборов (М., Мир, 1984).
- [10] Физико-химические свойства полупроводниковых веществ. Справочник, под ред. А.В. Новоселовой (М., Наука, 1977).
- [11] V.Yu. Rud', Yu.V. Rud', T. Walter, H.W. Shock. Inst. Phys. Conf. Ser., № 152, 971 (1998).
- [12] V.Yu. Rud', Yu.V. Rud', H.W. Shock. Inst. Phys. Sol. St. Phenomena, 67–68, 971 (1998).
- [13] Ф.П. Кесаманлы, В.Ю. Рудь, Ю.В. Рудь. ФТП, **33**, 513 (1998).

Редактор Л.В. Беляков

Photosensitivity of ZnO/CdS/Cu(In,Ga)Se₂ heterophotoelements at *y*-irradiation

V.V. Emtsev, Yu.A. Nikolaev, D.S. Poloskin, V.Yu. Rud'*, Yu.V. Rud', E.I. Terukov, M.V. Yakushev⁺

Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia * St. Petersburg State Polytechnical University, 195251 St. Petersburg, Russia + Strathclyde University, G 40 NG, Glasgow, UK

Abstract Photosensitivity of ZnO/CdS/Cu(In,Ga)Se₂ thin-film heterophotoelement in native and linearly polarized light were investigated at γ -irradiation ⁶⁰Co at first time. It is shown that γ -irradiation at T = 300 K practically is not influence on the photoelectrical parameters of these thin film heterojunctions up to the dose $\Phi \approx 1.1 \cdot 10^{18}$ quant/cm². One can conclude about the possibilities of use ZnO/CdS/CIGS thin-film heterophotoelements at high radiation phone.