Электрические свойства гетеропереходов *n*-GaN/*p*-SiC

© О.Ю. Ледяев, А.М. Стрельчук[¶], А.Н. Кузнецов, Н.В. Середова, А.С. Зубрилов, А.А. Волкова, А.Е. Николаев, А.А. Лебедев

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 26 апреля 2005 г. Принята к печати 10 мая 2005 г.)

Исследовавшиеся в настоящей работе эпитаксиальные слои GaN были выращены методом хлоридногидридной газофазовой эпитаксии. Основой для роста служили промышленно выпускаемые фирмой CREE (США) подложки p^+ -6*H*-SiC ($N_a - N_d \approx 7.8 \cdot 10^{17} \text{ см}^{-3}$), а также подложки n^+ -6*H*-SiC Лэли с предварительно выращенным слоем p^+ -6*H*-SiC. Проведенные в настоящей работе электрофизические исследования подтверждают достаточно хорошее качество полученных *n*-GaN/*p*-SiC-гетероструктур. Это показывает перспективность использования данной комбинации ростовых технологий для получения на основе гетеропереходов *n*-GaN/*p*-SiC биполярных и полевых транзисторов.

1. Введение

Известно, что благодаря своим электрофизическим параметрам карбид кремния и нитрид галлия являются весьма перспективными материалами для изготовления силовых приборов, в том числе и СВЧ диапазона. Ввиду отсутствия в настоящее время собственных монокристаллических подложек нитрида галлия для проведения гомоэпитаксиального роста, большинство нитридных приборов изготавливают путем эпитаксиального осаждения на инородные подложки. В основном в качестве таких подложек используются сапфир (Al_2O_3) и карбид кремния, причем подложки из карбида кремния являются более предпочтительным материалом для гетероэпитаксии нитрида галлия по сравнению с сапфиром. Рассогласование по параметру постоянной решетки между GaN и SiC составляет $\sim 3.5\%$ против 16% между GaN и сапфиром; значения коэффициента температурного расширения (КТР) GaN и SiC достаточно близки, в то время как КТР сапфира в 1.5-2 раза выше (в зависимости от кристаллографического направления). Теплопроводность SiC почти в 10 раз выше теплопроводности Al₂O₃.

Для уменьшения напряжения на границе раздела двух материалов и улучшения зародышеобразования между подложкой и растущим слоем обычно применяются тонкие эпитаксиальные слои GaN или AlN, выращенные при низких температурах. Было показано, что при выращивании GaN непосредственно на SiC возможно получение гетеропереходов [1–6]. Была также показана возможность получения гетеробиполярного транзистора *n*-GaN/*p*-6*H*-SiC/*n*-SiC [7]. Согласно данным [7], транзистор имел коэффициент усиления по току ~ 10⁶ и был работоспособен до температур ~ 260°С. Однако другим исследовательским группам не удалось пока повторить результаты авторов работы [7], что, возможно, связано с высокой плотностью дефектов в *p*-6*H*-SiC [4].

евых транзисторов.

2. Условия эксперимента

Исследовавшиеся в настощей работе эпитаксиальные слои GaN были выращены методом хлоридногидридной газофазовой эпитаксии [8]. Основой для роста служили промышленно выпускаемые фирмой CREE (США) подложки p^+ -6H-SiC ($N_a - N_d \approx 7.8 \cdot 10^{17} \text{ см}^{-3}$), а также подложки n^+ -6H-SiC Лэли с предварительно выращенным слоем p^+ -6H-SiC. Слой p^+ -6H-SiC ($N_a - N_d \approx 3 \cdot 10^{18} \text{ см}^{-3}$, толщина $\sim 5 \text{ мкм}$) был выращен методом сублимационной эпитаксии в вакууме [9]. Эпитаксия GaN проводилась непосредственно на подложку SiC без предварительного выращивания какихлибо буферных слоев [10]. Слои GaN специально не легировались, имели *n*-тип проводимости и концентрацию нескомпенсированных доноров $\sim (2-4) \cdot 10^{17} \text{ см}^{-3}$. Толщины слоев составляли $\sim 0.8 \text{ мкм}$.

Оптические свойства полученных слоев были исследованы методом фотолюминесценции (ФЛ). Для возбуждения люминесценции выращенных слоев использовался азотный лазер с длиной волны излучения 337.1 нм и импульсной мощностью 2 кВт на частоте 100 Гц. Спектры ФЛ снимались при температуре 77 К с помощью спектрометра с разрешением около 2 нм. Типичный спектр низкотемпературной ФЛ выращенных слоев представлен на рис. 1. Доминирующий пик в спектре соответствует оптическим переходам экситонов, связанных на доноре (DBE), что типично для качественных эпитаксиальных слоев GaN. Об этом также свидетельствует небольшая ширина данной полосы (41-44 мэВ). Небольшой "красный" сдвиг DBE-полосы в выращенных слоях по сравнению со спектром ФЛ в ненапряженном объемном GaN был объяснен влиянием растягивающих напряжений в эпитаксиальном слое в направлениях, перпендикулярных оси С [11,12]. Кроме DBE-полосы в спектрах можно заметить слабые донорно-акцепторные (D-A) полосы GaN (вместе с их фононными повторениями) в диапазоне длин волн 380-420 нм, а также имеющую характерную структуру полосу в диапазоне 440-540 нм. Последняя была интерпретирована как полоса люминесценции подложки SiC, поскольку наблюда-

[¶] E-mail: Anatoly.Strelchuk@mail.ioffe.ru

Рис. 1. Спектры фотолюминесценции при температуре 77 К: *I* — эпитаксиальная структура GaN/SiC, *2* — подложка SiC.

лось совпадение ФЛ в этой части спектра со спектром ФЛ подложки, как видно из рис. 1.

Для исследования электрофизических параметров n-p-гетеропереходов на основе данных эпитаксиальных структур плазмо-химическим травлением (в плазме газа фреон-12) были сформированы меза-структуры с диаметрами 100, 200 и 1500 мкм. В качестве маски при травлении использовался Ni. Ni также использовался для формирования омического контакта к *n*-GaN и *n*-SiC. Для получения омического контакта к *p*-SiC на поверхность полупроводника методом магнетронного напыления наносилась композиция Ti/Al/Ni, и затем образцы отжигались в вакууме.

3. Результаты

Электрические характеристики GaN/SiC-гетероструктур исследовались методом измерения вольт-амперных (I-V) и вольт-фарадных (C-V) характеристик при комнатной температуре. C-V-характеристики n-p-гетеропереходов GaN/SiC измерялись на частотах 1 и 10 кГц (рис. 2). (C-V)-характеристики были линейны в координатах $(1/C^2)-(V)$ до обратных напряжений ~ 12 В. Линейность характеристик, а также совпадение значений концентраций N_d-N_a со значением, полученным на эпитаксиальном слое GaN до формирования меза-структур, говорит о том, что гетеропереход резкий и асимметричный. Напряжение емкостной отсечки составляло 2.24 В на частоте 1 кГц и 2.28 В на частоте 10 кГц. Это значение близко к литературным данным для контактной разности потенциалов *n*-GaN/*p*-SiC-гетероструктуры [3]. Измеренные I-V-характеристики имели явно выраженный диодный характер (обратные и прямые I-Vхарактеристики гетероструктур представлены на рис. 3). Величина максимального обратного напряжения зависела от площади диода, увеличиваясь с уменьшением площади, и достигала ~ 60 В для образцов с наименьшей площадью. Прямые I-V-характеристики были нелинейны в области больших токов, прямое падение напряжения также зависело от площади диода. В области малых токов $(10^{-9}-3\cdot10^{-8} \text{ A})$ ток изменялся с напряжением по экспоненциальному закону: $I = I_0 \exp(qV/nkT)$

(рис. 4) с коэффициентом идеальности n = 2.5 (кри-

Рис. 2. Вольт-фарадные характеристики *n*-*p*-гетероструктуры GaN/SiC. Синусоидальные частоты измерений, кГц: *I* — 10, 2 — 1.

Рис. 3. Прямые (1, 3, 5) и обратные (2, 4, 6) вольт-амперные характеристики n-p-гетеропереходов GaN/SiC с различными диаметрами меза-структуры, мкм: 1, 2 - 1500, 3, 4 - 200, 5, 6 - 100.

Рис. 4. Прямые вольт-амперные характеристики *n*-*p*-гетеропереходов GaN/SiC с различными диаметрами меза-структуры, мкм: *I* — 1500, *2* — 200, *3* — 100.

вая 1) или 2 (кривая 3). Значение n > 2 является характерным признаком наличия туннельных токов.

4. Заключение

Проведенные нами исследования не выявили заметной разницы в свойствах эпитаксиальных слоев GaN, выращенных на подложках p^+ -SiC или эпитаксиальных структурах p^+ -SiC/ n^+ -SiC. В то же время подложки n-типа проводимости предпочтительны, так как имеют меньшую плотность структурных дефектов и меньшее удельное сопротивление, чем подложки p-типа, при том же уровне легирования.

Ранее было показано, что морфология эпитаксиальных слоев GaN сильно зависит от ориентации подложки SiC, и сделан вывод о необходимости использования строго ориентированных (планарных) подложек карбида кремния для роста GaN/SiC-гетеропереходов [13]. Поэтому успешное использование в настоящей работе метода сублимационной эпитаксии в вакууме для роста *p*-6*H*-SiC представляется перспективным, так как данный метод позволяет проводить эпитаксию на планарных подложках 6*H*-SiC, в отличие от более распространенного метода CVD, где для роста необходима разориентация поверхности подложки на $3-4^{\circ}$.

Проведенные в настоящей работе электрофизические исследования подтверждают достаточно хорошее качество полученных *n*-GaN/*p*-SiC-гетероструктур. Это показывает перспективность использования данной комбинации ростовых технологий для получения на основе гетеропереходов *n*-GaN/*p*-SiC биполярных и полевых транзисторов.

Список литературы

- E. Danielsson, S.-K. Lee, C.-M. Zetterling, M. Ostling, A. Nikolaev, I. Nikitina, A. Dimitriev. IEEE Trans. Electron. Dev., 48 (2001).
- [2] N.I. Kuznetsov, A.E. Gubenco, A.E. Nikolaev, Yu.V. Mel'nik, M.N. Blashenkov, I.P. Nikitina, V.A. Dmitriev. Mater. Sci. Eng. B, 46, 74 (1997).
- [3] J.T. Torvik, M. Leksono, J.I. Pankove, B.V. Zeghbroeck, H.M. Ng, T.D. Moustakas. Appl. Phys. Lett., 72, 1371 (1998).
- [4] J.T. Torvic, C.-H. Qiu, M. Leksono, J.I. Pankove. Appl. Phys. Lett., 72, 945 (1998).
- [5] J. Vacas, H. Lahre'che, T. Monteiro, C. Gaspar, E. Pereira, C. Brylinski, M.A. d'Forte-Poisson. Mater. Sci. Forum, 338– 342, 1651 (2000).
- [6] E. Danielsson, C.-M. Zetterling, M. Ostling, B. Breitholtz, K. Linthicum, D.B. Thomson, O.-H. Nam, R.F. Davis. Mater. Sci. Eng. B, 61–62, 320 (1999).
- [7] J.I. Pankove, S.S. Chang, H.C. Lee, R. Molnar, T.D. Moustakas, B. van Zeghbroeck. Proc. IEDM (San Francisco, CA) 389 (1994).
- [8] A.E. Nikolaev, Yu.V. Mel'nik, N.I. Kuznetsov, A.M. Strelchuk, A.P. Kovarsky, K.V. Vassilevski, V.A. Dmitriev. Mater. Res. Soc. Symp. Proc., 482, 251 (1998).
- [9] N.S. Savkina, A.A. Lebedev, D.V. Davydov, A.M. Strel'chuk, A.S. Tregubova, C. Raynaud, J.-P. Chante, M.-L. Locatelli, D. Planson, J. Milan, P. Godignon, F.J. Campos, N. Mestres, J. Pascual, G. Brezeanu, M. Badila. Mater. Sci. Eng. B, 61–62, 50 (2000).
- [10] A.E. Nikolaev, Yu.V. Mel'nik, M.N. Blashenkov, N.I. Kuznetsov, I.P. Nikitina, A.S. Zubrilov, D.V. Tsvetkov, V.I. Nikolaev, V.A. Dmitriev, V.A. Soloviev. MRS Internet J. Nitride Semicond. Res., 1, 45 (1996).
- [11] W. Rieger, T. Metzger, H. Angerer, R. Dimitrov, O. Ambacher, M. Stutzmann. Appl. Phys. Lett., 68, 970 (1996).
- [12] B. Monemar, J.P. Bergman, H. Amano, I. Akasaki, T. Detchprohm, K. Hiramatsu, N. Sawaki. *Proc. Int. Symp. "Blue Laser and Light Emitting Diodes"* (Chiba Univ., Japan, March 5–7, 1996).
- [13] M. Kamp. Opt. Quant. Electron., 32, 227 (2000).

Редактор Л.В. Беляков

Electrical characteristics of *n*-GaN/*p*-SiC heterojunctions

O.Yu. Lediaev, A.M. Strel'chuk, A.N. Kuznetsov, N.V. Seredova, A.S. Zubrilov, A.A. Volkova, A.E. Nikolaev, A.A. Lebedev

loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract Investigated GaN epitaxial layer was grown by hydride vapor phase epitaxy (HVPE) on commercial p^+ -SiC substrate or on n^+ -SiC Lely substrate with previously grown by sublimation epitaxy p^+ -SiC layer. Investigation of electrical characteristics shows enough good quality of grown *n*-GaN/*p*-SiC heterojunctions. This shows applicability of this technological combination for producing *n*-GaN/*p*-SiC bipolar or FET transistors.