Новый тип высокоэффективных двусторонних кремниевых солнечных элементов с внешними шинами и проволочной контактной сеткой

© Г.Г. Унтила[¶], Т.Н. Кост, А.Б. Чеботарева, М.Б. Закс*, А.М. Ситников*, О.И. Солодуха*

Научно-исследовательский институт ядерной физики Московского государственного университета им. М.В. Ломоносова, 119992 Москва, Россия

* НПФ Кварк,

350000 Краснодар, Россия

(Получена 28 февраля 2005 г. Принята к печати 9 марта 2005 г.)

Представлены результаты для двусторонних, с внешними шинами, кремниевых солнечных элементов из $[n^+p(n)p^+]$ -структур на основе Cz-Si с токособирающей системой новой конструкции LGWEB (laminated grid of wire external busbars), которая состоит из пленки проводящего оксида, нанесенной на кремниевую структуру, электрических шин, расположенных рядом с кремниевой структурой, и проволочной контактной сетки, прикрепленной низкотемпературным методом ламинирования одновременно к оксиду и шинам. Двусторонние солнечные элементы LGWEB имеют рекордно высокую для подобных приборов эффективность: 17.7%(n-Si)/17.3%(p-Si) при двусторонности 74-82% для гладкой тыльной поверхности и 16.3%(n-Si)/16.4%(p-Si) при двусторонности 89% для текстурированной тыльной поверхности. Показано, что технология LGWEB позволяет достичь величины кпд, превосходящей 21%.

1. Введение

Разработка новых методов формирования электрических контактов к солнечным элементам (СЭ) является одной из ключевых проблем на пути решения основных задач полупроводниковой солнечной фотоэнергетики (ФЭ).

Для того чтобы ФЭ могла конкурировать с нынешними источниками энергии (ископаемое топливо, атомная энергетика, другие виды возобновляемой энергии), необходимо снизить стоимость пикового ватта (W_p) установленной мощности системы ФЭ как минимум в 2 раза с нынешних 6/W_p до уровня менее 3\$/W_p, а также увеличить объем производства (700 MW_p в 2003 г.) примерно в 1000 раз в течение 30-50 лет [1,2]. Исходя из тенденции развития ФЭ, которая с 1979 по 2003 г. стабильно демонстрирует ежегодные темпы роста объема производства в 25-30% и снижение цены W_p на 5-6% в год [1], считается, что эти задачи реалистичны. Соответственно историческое преодоление ценового порога прогнозируется на 2013 г. Однако какие технические задачи должны быть решены, чтобы реализовать эту цель?

В настоящее время более 90% всего объема производства ФЭ составляют плоско-панельные модули из кристаллического кремния [2]. Прогноз показывает, что в среднесрочной перспективе альтернативы кремнию нет [3]. Европейская ассоциация прозводителей приборов фотовольтаики делает ставку на плоско-панельный подход и планирует, в том числе [4]:

 увеличить коэффициент полезного действия (кпд)
 СЭ в производстве с нынешних 12–16% до 20%, для чего, в частности, признано необходимым ввести в их конструкцию высокоэффективные контакты, причем предпочтительно расположенные на тыльной стороне (вариант BCSC, back-contact solar cell) для удешевления процесса сборки модуля;

– снизить расход кремния с 16 г/W_p (сегодня) до 8 г/W_p , поскольку около половины стоимости модуля составляет цена кремниевых пластин [5,6]; таким образом, толщина СЭ должна уменьшиться с 300 до ~ 120 мкм.

Необходимо отметить, что в качестве эффективных способов снижения цены W_p также рассматриваются двусторонние (bifacial) [7] и концентраторные [8,9] СЭ.

Таким образом, необходимость снижения цены W_p определяет основные направления работ в кремниевой ФЭ: СЭ должны быть обязательно высокоэффективными и при этом тонкими (плоско-панельный подход), вместе с тем желательно двусторонними и с контактами на тыльной стороне, либо концентраторными (находящийся в стадии становления концентраторный подход).

Рассматривая современное состояние дел с кпд кремниевых СЭ, необходимо отметить, что в лабораторных СЭ уже достигнут кпд более 20% (24.7% — абсолютный рекорд для кремниевого СЭ [10]), однако кпд промышленных СЭ значительно ниже (12–16%). Основная причина, которая приводит к снижению кпд промышленных СЭ, связана с технологией формирования электрических контактов.

Электрические контакты в прямом и в переносном смысле определяют "лицо" СЭ. В настоящее время в промышленности доминирует технология screen-printing (SP), используемая при изготовлении 90% всех кремниевых СЭ, которая основана на трафаретной печати и впекании металлсодержащих паст. Однако технология SP отличается не только простотой и экономичностью, но и существенными недостатками, которые обусловливают ее непригодность в применении к тонким СЭ, а также ограничивают кпд промышенных СЭ [11]. В свою очередь все рекордные значения кпд получены при

[¶] E-mail: GUntila@mics.msu.su

использовании технологии ECO (evaporated contacts) — нанесенных в вакууме контактов, рисунок которых формируют с помощью фотолитографии. Однако изза высокой стоимости технология ECO в массовом производстве не используется.

Таким образом, ключевая долгосрочная задача ФЭ состоит в ликвидации разрыва между кпд промышленных и лабораторных СЭ, для чего необходимо разработать новые, простые, рентабельные технологии. В особенности это относится к технологии изготовления высокоэффективных контактов, которые не должны содержать операций фотолитографии и маскирования.

В качестве перспективных конструкций для СЭ с кпд выше 20% расссматриваются, в частности, структура HIT (heterojunction with intrinsic thin-layer) фирмы Sanyo Electric [12], point-contact solar cell от Sun Power [13] и конструкция OECO (oblique evaporated contacts), разрабатываемая в ISFH [14]. В статье представлены результаты для двусторонних кремниевых СЭ с проволочной контактной сеткой и внешними шинами, изготовленных по разрабатываемой нами новой низкотемпературной технологии LGWEB (laminated grid of wire external busbars) [15].

2. Конструкция солнечного элемента LGWEB

Солнечный элемент (рис. 1) состоит из структуры 1 $[n^+n(p)p^+]$ -Si и двух (лицевой и тыльной) токособирающих систем, в состав каждой из которых входят:

Рис. 1. Конструкция СЭ LGWEB (вид лицевой и тыльной сторон идентичен): 1 — структура $[n^+n(p)p^+]$ -Si с нанесенными на обе поверхности слоями прозрачного проводящего оксида, 2 — лицевые шины, 3 — тыльные шины, 4 — проволочные контактные полоски, 5 — ламинационная пленка.

нанесенный на поверхность структуры слой прозрачного проводящего оксида TCO (transparent conducting oxide), который одновременно является просветляющим покрытием; электрические шины (лицевые — 2, тыльные — 3), расположенные рядом со структурой 1; проволочная контактная сетка (лицевая — 4), изготовленная из медной проволоки, покрытой контактной композицией, прикрепленная низкотемпературным методом ламинирования одновременно к лицевому слою TCO и лицевым шинам, и аналогично с тыльной стороны; ламинационная пленка 5, которая прикреплена к поверхности TCO и фиксирует проволочную контактную сетку.

3. Технология изготовления солнечного элемента LGWEB

Для создания СЭ использовали структуры на базе Cz-Si (кремний, полученный методом Чохральского), как n-, так и p-типа проводимости. В структурах на основе n-Si кремний имел удельное сопротивление $\rho = 4.5 \text{ OM} \cdot \text{см}$ и толщина составляла 390 мкм, а на основе p-Si — 40 OM · см и 290 мкм. Структуры $[n^+np^+]$ -Si и $[n^+pp^+]$ -Si изготавливали в НПФ "Кварк" (г. Краснодар) на обычном производственном оборудовании путем диффузии фосфора и бора из нанесенных фосфорсодержащего и борсодержащего стекол. Были использованы как текстурированные с двух сторон пластины, так и пластины с гладкой тыльной поверхностью после щелочного травления. Структуры после снятия стекол могли подвергаться травлению в смеси азотной и плавиковой кислот [16].

В качестве ТСО на поверхность кремниевой пластины наносили: на p^+ -слой — пленку In₂O₃:Sn (ITO, indium tin oxide — сплав оксидов индия и олова), на n^+ -слой — пленку In₂O₃: F [17]. Пленки растили методом распыления раствора при температуре подложки 400-500°C [18]. Время нанесения пленки составляло ~ 1 мин. Пленки толщиной ~ 75 нм имели темноголубой цвет. При этом пленки ІТО имели удельное слоевое сопротивление $\sim 50 \, \text{Ом}/\square$, а пленки In_2O_3 : F ~ 30 Ом/П. После нанесения ТСО образец необходимой площади вырезали с помощью алмазного скрейбера, дополнительную обработку торцов не проводили. Контактную сетку из медной проволоки диаметром 70 мкм, покрытой контактной композицией, прикрепляли к ТСО с помощью ламинационной пленки толщиной 32 мкм при температуре 150°С.

4. Достоинства конструкции LGWEB

Введение ТСО позволяет использовать в LGWEB простой высокоэффективный гомогенный (не селективный)
 эмиттер с удельным слоевым сопротивлением 100 Ом/□ и более.

 Сочетание проволочной контактной сетки с ТСО позволяет получить в СЭ LGWEB экстраординарно низкие потери на затенении (3.2%) и последовательном сопротивлении [19], не выше, чем в СЭ с металлизацией ЕСО, и примерно в 3 раза ниже, чем для металлизации SP [20–22]. Так, ширина проволочной контактной полоски составляет всего ~ 80 мкм и может быть легко уменьшена. Кроме того, контактные полоски из медной проволоки имеют низкое продольное сопротивление, ~ 40 мОм/см, более чем в 15 раз меньше, чем получают методом SP. Эти свойства особенно важны для СЭ большой площади и в концентраторных СЭ.

- Конструкция LGWEB предпочтительнее варианта BCSC, поскольку она свободна от его главного недостатка, состоящего в том, что для получения высокоэффективного BCSC необходим дорогой кремний, обычно Fz-Si (полученный методом безтигельной зонной плавки). Например, расчеты, выполненные в Sun Power, показали, что для получения кпд > 20% в их Point Contact СЭ требуется кремний с временем жизни носителей > 1 мс (т.е. Fz-Si) [13]. Аналогично для высокого кпд в СЭ ОЕСО толщиной 200-300 мкм диффузионная длина должна быть не менее 500-800 мкм [23]. Для кремния с худшими параметрами кпд BCSC резко уменьшается, причем значительно сильнее, чем при расположении контактов на обеих поверхностях. Таким образом, уникальное преимущество СЭ LGWEB состоит в том, что шины в них расположены в стороне от СЭ, но при этом контактные полоски расположены на обеих поверхностях. В результате не только упрощается процесс сборки модуля, причем в большей степени, чем в варианте BCSC, но и не повышаются требования к качеству кремния.

 Проволочные контактные полоски можно легко изготавливать любой формы, например треугольной, что рассматривается как эффективный способ уменьшения затенения [24].

Проволочные контактные полоски совместимы практически с любой формой поверхности СЭ, в частности, не только гладкой или текстурированной, но также шероховатой, волнистой или изогнутой. Это означает, что для ленточного кремния (EFG) конструкция LGWEB имеет исключительные преимущества перед другими методами.

- СЭ LGWEB по своей конструкции являются двусторонними.

Низкая температура процесса изготовления (< 150°С) делает технологию LGWEB применимой к СЭ на основе аморфных материалов, включая структуру HIT.

5. Параметры солнечного элемента LGWEB

Из световых вольт-амперных характеристик (ВАХ) определяли параметры СЭ: J_{sc} (плотность тока короткого замыкания), V_{oc} (напряжение холостого хода), FF (фактор заполнения) и Eff (эффективность). Для образца #615 результаты получены в SNL (Sandia National Laboratories), включая измерения спектрального отклика

Таблица 1. Параметры солнечных элементов LGWEB

	Группа 1 : $n^+ - n - p^+$				Группа 2: $n^+ - p - p^+$			
Параметр	#615		#739		#1044-2		#1043-1	
	front	back	front	back	front	back	front	back
Текстурирование	есть	есть	есть	нет	есть	есть	есть	нет
$R_{\text{ini}}, \text{Ом}/\Box$	26		60		52		84	
$R_{\rm fin}, { m Om}/\square$	112		110		85		84	
I_{sc} , мА/см ²	35.0	30.8	36.2	27.3	35.4	31.3	36.6	29.8
Voc, мВ	609	607	623	615	617	614	619	615
FF, %	76.5	77.4	78.3	78.5	75.2	76.6	76.2	78.0
Eff, %	16.3	14.5	17.7	13.2	16.4	14.7	17.3	14.3
Eff _{total} , %	30.8		30.9		31.1		31.6	
Двусторонность, %	88.9		74.6		89.6		82.7	
Площадь, cm^2	32.2		42		42.3		42.3	

Примечание. $R_{\rm ini}$ — слоевое сопротивление эмиттера после дифузии; $R_{\rm fin}$ — слоевое сопротивление эмиттера после подтравливания эмиттера; Eff_{total} — суммарная эффективность с фронтальной и тыльной сторон; front, back — фронтальная и тыльная поверхности соответственно. Двусторонность (bifaciality) — отношение кпд при освещении с тыльной и лицевой сторон. Солнечный элемент #615 тестирован в Sandia National Laboratories и использовался как калибровочный образец.

и коэффициента отражения. Для остальных СЭ J_{sc} определяли на импульсном тестере фирмы "Телеком-СТВ", при этом образец #615 использовали для калибровки по току. В результате проведенного нами исследования было установлено, что при правильной калибровке по току тестер фирмы "Телеком-СТВ" обеспечивает корректное (ошибка менее $\pm 2\%$) измерение J_{sc} , однако занижает параметры Voc и особенно сильно FF, что обусловлено природой импульсных измерений. При этом степень занижения увеличивается с ростом эффективного времени жизни неосновных носителей заряда в базе. Поэтому для определения параметров Voc, FF и Eff измеряли стационарные световые ВАХ при освещении галогеновой лампой накаливания мощностью 1000 Вт на термостатируемом столике при температуре СЭ $(25 \pm 0.1)^{\circ}$ С. При этом значение тока короткого замыкания каждого СЭ выставлялось в соответствии со значением, полученным на тестере "Телеком-СТВ".

В табл. 1 представлены параметры СЭ LGWEB из *n*-Si (группа 1) и *p*-Si (группа 2), как с текстурированной, так и с гладкой тыльной стороной. Как видно из таблицы, технология LGWEB позволяет получить двусторонние СЭ из Cz-Si с лицевым кпд выше 17% и тыльным кпд выше 14%.

6. Сравнение солнечных элементов LGWEB и ОЕСО

Чтобы оценить уровень достигнутых нами результатов, проведем их сравнение с данными, которые получил один из пионеров и лидеров фотовольтаики R. Hezel в ISFH (Германия) с помощью других методов нанесения

Тип СЭ		Si (тип)	Площадь, см ²	$ ho(\mathrm{Si})$, Ом \cdot см	Eff, % (front)	Eff, % (back)
	Односторонний	Fz(p)	4	0.5 1.5	21.1 20.4	_
OECO [14,23]			100	0.5	20.0	_
		Cz(p)	4	1.3	18.3	_
			100	1.3	17.9	_
	Двусторонний				19.0	17.0
	Двусторонний BCSC	Fz(p)	4	0.5	18.1 19.2	17.4 16.0
ECO (front&back), двусторонний [7] ECO (front)/SP(back), двусторонний [25] SP (front&back), двусторонний [26]		Fz(p) $Fz(p)$ $Fz(p)$ $Cz(p)$	4 4 2.6 4	0.5 1.5 1.5 6.0	20.1 17.4 14.5 13.4	17.2 13.4 12.7 11.5
LGWEB -		$C_{7}(p)$	42	40	16.4	14.7*
		CL(p)		10	17.3	14.3**
		Cz(n)	32	45	16.3	14.5*
			42	1.5	17.7	13.2**

Таблица 2. Параметры СЭ, полученные для конструкции LGWEB, а также в ISFH с помощью различных технологий нанесения контактов

Примечание. * текстурированы и фронтальная, и тыльная поверхности; ** текстурирована только фронтальная поверхность; front, back — фронтальная и тыльная поверхности соответственно.

контактов, и в частности для новой высокоэффективной технологии ОЕСО. Уникальная особенность технологии ОЕСО состоит в том, что впервые высокоэффективные контакты ЕСО МТДП (металл-туннельный диэлектрик-полупроводник) нанесены на СЭ без использования фотолитографии и маскирования. Для проведения сравнения в табл. 2 собраны параметры СЭ, полученные в ISFH с помощью различных методов металлизации — ОЕСО, ЕСО и SP, а также для разрабатываемой нами конструкции LGWEB.

Выбор в пользу именно группы из ISFH для проведения сравнения связан исключительно с многообразием и рекордно высоким уровнем полученных ими результатов, которые позволяют проследить влияние на кпд СЭ таких важных факторов, как качество кремния (Cz-Si или Fz-Si), удельное сопротивление кремния ρ , размер СЭ, метод нанесения контактов — ЕСО или SP, тип конструкции — односторонний (monofacial) или двусторонний (bifacial), перенесение всех контактов на тыльную сторону — BCSC.

Анализ данных в табл. 2 показывает, что рекордное значение кпд по технологии ОЕСО 21.1% получено для одностороннего СЭ площадью 4 см² из кремния *p*-*Fz* с $\rho = 0.5$ Ом · см. Однако кпд СЭ ОЕСО уменьшается при переходе: а) от *Fz*-Si к *Cz*-Si — на 2.1–2.8%, б) от одностороннего СЭ к двустороннему — на ~ 2.1%, в) от одностороннего СЭ к двустороннему с контактами

на тыльной стороне — на 1.9–3%, г) от размера 4 см² к $100\,{\rm cm}^2$ — на 0.4–1%.

Для корректного сравнения СЭ ОЕСО и LGWEB нужны данные для сопоставимых по свойствам СЭ, которых, к сожалению, нет. Однако можно оценить, что кпд двустороннего с контактами на тыльной стороне ОЕСО СЭ площадью 4 см² из C_z -Si кпд составит 15.3–16.4% с фронтальной стороны и 13.2–14.6% с тыльной, т.е. не больше, чем кпд СЭ LGWEB (с фронтальной — на ~ 1% меньше).

7. Сравнение солнечного элемента LGWEB и солнечного элемента с металлизацией Screen Printing

Данные в табл. 2 позволяют также проследить, как уменьшается кпд двустороннего СЭ из кремния Fz-Si при замене в нем контактов ЕСО на контакты SP. Так, если используется металлизация ЕСО на обеих сторонах, то кпд (фронтальный/тыльный) достаточно высоки, (20.1/17.2)%. При замене контактов с ЕСО на SP только на тыльной стороне кпд уменьшаются до (17.4/13.4)%, а для СЭ с полностью контактами SP кпд падают до крайне низких значений — (14.5/12.7)%. Этот пример наглядно демонстрирует недостатки технологии SP.

8. Перспектива увеличения кпд солнечного элемента LGWEB

За счет мероприятий, рассматриваемых далее, кпд СЭ LGWEB может быть увеличен более чем на 4.5% и соответственно превысит 21%.

Отражение. Прежде всего отметим, что СЭ LGWEB уже ламинирован, т.е. измеряемое для него кпд максимально приближено к кпд в модуле. В настоящее время нами используется ламинационная пленка с высоким показателем преломления, $n \approx 1.56$, что приводит к высокому отражению, ~ 4.8%. На рис. 2 приведены коэффициенты отражения (R), внешний (Q_e) и внутренний (Q_i) квантовый выход для СЭ #615. Видно, что в диапазоне 450–1000 нм $R \approx 8-9\%$, из них вклад ламинационной пленки составляет ~ 4.8%, и 3.2% дает проволочная сетка. Следовательно, за счет уменьшения n до 1.3 можно повысить кпд на ~ 0.5%.

Удельное сопротивление базы. Оптимизация удельного сопротивления кремния ρ является большим резервом для увеличения кпд СЭ LGWEB. Заметим, что в рекордных СЭ материал базы обычно имеет высокий уровень легирования, $\sim 3 \cdot 10^{16} \, {\rm cm}^{-3} \, (\rho \approx 0.5 \, {\rm Om} \cdot {\rm cm})$, что способствует росту кпд за счет уменьшения объемного рекомбинационного тока, последовательного сопротивления, негативной роли эффекта высокого уровня инжекции. В работе [23] подробно исследовано влияние ρ на кпд СЭ ОЕСО в диапазоне $\rho = 0.08 - 1.4 \, \text{Om} \cdot \text{см}$. Показано, что с ростом ρ от оптимального значения 0.4 до 1.4 Ом · см кпд уменьшается с 21.1 до 20.4%, т.е. на 0.7%. В то же время СЭ LGWEB изготовлены из кремния с неоптимальным уровнем легирования, в 30-100 раз меньшим, чем обычно используется в высокоэффективных СЭ. Поэтому есть основания ожидать, что оптимизация ρ приведет к росту клд СЭ LGWEB более чем на 1%.

Диффузионные слои. Диффузионные слои в СЭ LGWEB еще не оптимизированы. Коротковолновая чув-

Рис. 2. Коэффициент отражения (R), внутренний (Q_i) и внешний (Q_c) квантовые выходы разделения зарядов для СЭ #615.

Физика и техника полупроводников, 2005, том 39, вып. 11

Рис. 3. Сравнение спектральной чувствительности СЭ LGWEB в сине-зеленом (350–540 нм) и инфракрасном (920–1200 нм) диапазонах при фронтальном освещении, нормированные на чувствительность #615.

Рис. 4. Зависимость клд СЭ LGWEB от отношения его периметра (P) к площади (S) при освещении с фронтальной (1) и тыльной стороны (2).

ствительность СЭ #615 невысокая [20], что мы связываем с сильным исходным легированием эмиттера $(26 \, \text{Om} / \square)$. Однако замечено, что коротковолновая чувствительность возрастает по мере увеличения исходного (т.е. сразу после диффузии) слоевого сопротивления эмиттера R_{ini} (рис. 3). Кроме того, с ростом R_{ini} не только возрастает коротковолновая чувствительность, но улучшаются и другие параметры СЭ (табл. 1). Заметим, что длинноволновая чувствительность образцов с гладкой тыльной стороной выше, чем соответствующих образцов с текстурированной тыльной поверхностью, что, очевидно, связано с увеличением отражения длинноволнового света от гладкой поверхности. Кроме того, длинноволновая чувствительность СЭ на n-Si в целом выше, чем на p-Si, возможно, по той причине, что их толщина на 100 мкм больше.

Края. Края СЭ LGWEB не подвергались специальной обработке и являются источником потерь. Экспериментальные данные показывают (рис. 4), что увеличение площади СЭ LGWEB приводит не к уменьшению кпд, как в СЭ ОЕСО, а к его увеличению. Таким образом, решение проблемы торцов позволит повысить кпд на $\sim 0.5\%$.

Качество кремния. За счет использования высококачественного кремния F_z -Si, как видно из табл. 2, возможно увеличить кпд СЭ LGWEB на $\sim 2.5\%$.

9. Заключение

Таким образом, СЭ на основе новой конструкции и технологии изготовления токособирающей системы LGWEB продемонстрировали рекордный кпд для этого класса СЭ (двусторонние, back-contact, из *Cz*-Si). Проведенный анализ показывает, что существует большое поле деятельности для оптимизации и повышения кпд СЭ LGWEB, который имеет потенциал превзойти 21%.

Работа была выполнена при поддержке РФФИ (грант № 04-02-16691).

Авторы выражают благодарность Б.Л. Эйдельману и А.Ф. Яремчуку за плодотворное обсуждение результатов и содействие в проведении измерений.

Список литературы

- [1] R.M. Swanson. Proc. 19th Europ. Photovolt. Solar Energy Conf. (Paris, France, 2004) 2CV.2.63.
- [2] H.A. Aulich, F.-W. Schulze. Proc. 17th Europ. Photovolt. Solar Energy Conf. (Munich, Germany, 2001) p. 65.
- [3] A. Goetzberger. Proc. 17th Europ. Photovolt. Solar Energy Conf. (Munich, Germany, 2001) p. 9.
- [4] G.P. Willeke. Proc. 19th Europ. Photovolt. Solar Energy Conf. (Paris, France, 2004) 2CP.1.1.
- [5] R. Einhaus, D. Sarti, S. Pleier, M. Blum, P.J. Ribeyron, F. Durand. Proc. 16th Europ. Photovolt. Solar Energy Conf. (Glasgow, UK, 2000) O.D5.5.
- [6] J.F. Nijs, J. Szlufcik, J. Poortmans, S. Mertens. Proc. 16th Europ. Photovolt. Solar Energy Conf. (Glasgow, UK, 2000) P.D2.1.
- [7] A. Hubner, A.G. Aberle, R. Hezel. Proc. 14th Europ. Photovolt. Solar Energy Conf. (Montreux, Switzerland, 1992) p. 92.
- [8] R. Swanson. Progr. Photovolt.: Res. Appl., 8 93 (2000).
- [9] Ж.И. Алфёров, В.М. Андреев, В.Д. Румянцев. ФТП, 38, 8 (2004).
- [10] J. Zhao, A. Wang, M.A. Green. Progr. Photovolt.: Res. Appl., 7, 411 (1999).
- [11] M.A. Green. Proc. 16th Europ. Photovolt. Solar Energy Conf. (Glasgow, UK, 2000) OB3.1.
- [12] H. Sakata. Proc. 3rd World Conf. Photovolt. Solar Energy Conv. (Osaka, Japan, 2003) 4O-D10-01.
- [13] K.R. McIntosh, M.J. Cudzinovic, D.D. Smith, W.P. Mulligan, R.M. Swanson. Proc. 3rd World Conf. Photovolt. Solar Energy Conv. (Osaka, Japan, 2003) 4O-D10-05.
- [14] R. Hezel, R. Meyer, J.W. Mueller. Proc. 19th Europ. Photovolt. Solar Energy Conf. (Paris, France, 2004) 2CV.2.40.

- [15] G. Untila, A. Osipov, T. Kost, A. Chebotareva, M. Zaks, A. Sitnikov, O. Solodukha, A. Pinov. Proc. 16th Europ. Photovolt. Solar Energy Conf. (Glasgow, UK, 2000) p. 1468.
- [16] G. Untila, A. Osipov, T. Kost, A. Chebotareva, M. Zaks, A. Sitnikov, O. Solodukha. Proc. 17th Europ. Photovolt. Solar Energy Conf. (Munich, Germany, 2001) p. 1796.
- [17] G. Untila, A. Osipov, T. Kost, A. Chebotareva, M. Zaks, A. Sitnikov, O. Solodukha, A. Pinov. *Proc. 17th Europ. Photovolt. Solar Energy Conf.* (Munich, Germany, 2001) p. 1793.
- [18] G. Untila, A. Osipov. Proc. 2nd World Conf. on Photovolt. Solar Energy Conv. (Vienna, Austria, 1998) p. 1555.
- [19] G. Untila, A. Osipov, T. Kost, A. Chebotareva. Proc. 17th Europ. Photovolt. Solar Energy Conf. (Munich, Germany, 2001) p. 265.
- [20] K.A. Munzer, K.T. Holdermann, R.F. Schlosser, S. Sterk. Proc. 16th Europ. Photovolt. Solar Energy Conf. (Glasgow, UK, 2000) OB7-2.
- [21] F. Recart, G. Bueno, J.C. Jimeno, J.R. Gutierrez, F. Hernando, V. Rodriguez. Proc. 16th Europ. Photovolt. Solar Energy Conf. (Glasgow, UK, 2000) VA1.50.
- [22] F. Recart, R. Gutierrez, V. Rodriguez, J.C. Jimeno, F. Hernando, G. Bueno. Proc. 16th Europ. Photovolt. Solar Energy Conf. (Glasgow, UK, 2000) p. 1654.
- [23] R. Hezel, W. Hoffman. Proc. 3rd World Conf. Photovolt. Energy Conv. (Osaka, Japan, 2003) 4P-C4-20.
- [24] A.W. Blackers. Proc. 16th Europ. Photovolt. Solar Energy Conf. (Glasgow, UK, 2000) OB2.2.
- [25] B. Lenkeit, S. Steckmetz, F. Artuzo, R. Hezel. Solar Energy Mater. & Solar Cells, 65, 317 (2001).
- [26] B. Lenkeit, S. Steckmetz, A. Mucklich, A. Metz, R. Hezel. Proc. 16th Europ. Photovolt. Solar Energy Conf. (Glasgow, UK, 2000) VA1.31.

Редактор Л.В. Шаронова

A new type of high-efficiency bifacial silicon solar cells, with external busbars and current-collecting grid of wire

G.G. Untila, T.N. Kost, A.B. Chebotareva, M.B. Zaks*, A.M. Sitnikov*, O.I. Solodukha*

Nuclear Physics Institute,

Lomonosov Moscow State University,

119992 Moscow, Russia

* SPF Quark, 350000 Krasnodar, Russia

Abstract The results are presented for bifacial, with external busbars, silicon solar cells of $[n^+p(n)p^+]$ Cz-Si structures based on a current-collecting system of new design LGWEB (laminated grid of wire external busbars), which consists of transparent conducting oxide film, deposited on Si-structure, busburs, adjacent to Si-structure, and the contact grid of wire, attached by means of low-temperature lamination simultaneously to the oxide and busbars. Bifacial LGWEB solar cells yield the record high efficiency for such SC: 17.7%(n-Si)/17.3%(p-Si) with 74-82% bifaciality for flat back and 16.3%(n-Si)/16.4%(p-Si) with 89% bifaciality for textured back. As is shown the potential of LGWEB technology exceeds 21%.