Микрофотолюминесценция нелегированного монокристаллического теллурида цинка, полученного неравновесными парофазными методами

© В.В. Ушаков[¶], Ю.В. Клевков

Физический институт им. П.Н. Лебедева Российской академии наук, Отделение физики твердого тела, 119991 Москва, Россия

(Получена 22 ноября 2004 г. Принята к печати 6 декабря 2004 г.)

Методами микрофотолюминесцентного спектрального анализа и картирования исследованы свойства кристаллов нелегированного объемного ZnTe, полученного в неравновесных условиях кристаллизации из паровой фазы с участием химических реакций. Несмотря на существенное увеличение скорости кристаллизации, в отношении набора и концентрации остаточных дефектов исследованные образцы не уступали качественным монокристаллам, полученным в квазиравновесных условиях из паровой фазы при значительно более высоких температурах. Вместе с тем отсутствие люминесцентного контраста на границах монокристаллических зерен и малая эффективность термоотжига указывают на то, что в полученных материалах доминирующие безызлучательные ростовые дефекты являются малоподвижными и термостабильными комплексами, образовавшимися в результате ассоциации стехиометрических дефектов и, возможно, фоновых примесей.

1. Введение

Монокристаллический теллурид цинка — прямозонное полупроводниковое соединение А^{II}В^{VI} с шириной запрещенной зоны ~ 2.3 эВ — является привлекательным объектом для физических исследований и технологических разработок в области светоизлучающих и электрооптических устройств видимого диапазона. Однако при квазиравновесных условиях роста этих кристаллов далеко не всегда обеспечивается прямая зависимость их физических свойств от состава, поскольку вследствие ретроградного характера линии солидус на сечении *T*-*x* (температура-состав) фазовой диаграммы концентрация свободных носителей определяется трудно контролируемым взаимодействием стехиометрических дефектов и легирующих (фоновых) примесей. Например, известные проблемы с получением легированного материала *п*-типа проводимости приводят к тому, что лучшими характеристиками до сих пор обладают светоизлучающие устройства на основе МОП структур, а не *p*-*n*-переходов [1]. Нельзя также забывать, что электрофизические и оптические свойства реальных кристаллов формируются в "игре" всех видов дефектов термодинамического происхождения, как точечных, так и протяженных (дислокации, границы раздела).

Альтернативой является использование неравновесных методов роста, позволяющих на основе изменения механизмов встраивания атомов матрицы и легирующих примесей в кристаллическую решетку избежать ограничений, накладываемых фазовыми диаграммами, и трансформировать примесно-дефектную конфигурацию в требуемую сторону для получения материала с заданными свойствами.

Ранее [2,3] нами были исследованы свойства объемных кристаллов CdTe, полученных в неравновесных парофазных процессах, включающих низкотемпературный синтез из глубоко очищенных исходных компонентов и последующую очистку соединения в условиях конгруэнтной сублимации, движения пара в режиме газодинамических потоков и повышенной скорости конденсации при низкой температуре. В данной работе различные варианты неравновесных условий кристаллизации из паровой фазы с участием химических реакций использованы для получения нелегированного объемного ZnTe. Свойства полученного материала исследованы методами низкотемпературного микролюминесцентного спектрального анализа и картирования, сочетающих высокую чувствительность к содержанию в кристаллах примесей и дефектов и локальность измерений.

2. Приготовление образцов и методика эксперимента

Приведем краткие характеристики разработанных неравновесных парофазных методов кристаллизации объемного материала с повышенными скоростями осаждения.

1) Метод вакуумной сублимации в температурном градиенте предварительно синтезированного бинарного соединения на сечении P-x (давление-состав) фазовой диаграммы с приведением его к составу точки минимального давления P_{\min} .

В режиме газодинамических потоков скорости конденсации паровой среды при температурах $680-720^{\circ}$ С составляли 200–250 мкм/ч (с учетом коэффициента конденсации). При осаждении в динамическом вакууме на стенках кварцевого реактора был получен текстурированный материал с размером монозерен до 1.5 мм и предпочтительным направлением роста [111]. По данным масс-спектрометрического анализа основными фоновыми примесями в этом материале (в пределах обнаружительной способности) были О, С, Сu, Li в концентрации ~ 10^{15} см⁻³.

[¶] E-mail: ushakov@mail1.lebedev.ru

2/3) Метод химического синтеза соединения с участием паров компонентов Zn и Te₂, подаваемых в зону синтеза из отдельных ячеек, сопряженных с кристаллизатором.

Процессы проводились в кварцевом реакторе квазизамкнутого типа в динамическом вакууме. Плотность потоков пара компонентов (пересыщение) и соотношение паровых видов (нестехиометричность паровой среды в зоне синтеза) задавались нагревом ячеек с компонентами при индивидуальном контроле их температуры (давления паров). При величине пересыщения паров в зоне кристаллизации 10³-10⁴ и относительно небольших отклонениях паровой среды в сторону избытка Те (2) или Zn (3) на стенках кварцевого кристаллизатора при температурах 650-720°С со скоростью до 3000 мкм/ч высаживался объемный поликристаллический конденсат, состоящий из граненых кристаллитов размером до 1 мм с преимущественной ориентацией {111}. Основными дефектами структуры в монозернах, выявленными методами травления и оптической микроскопии, были двойники.

Люминесцентные исследования проводились как на образцах с естественными поверхностями роста, так и на образцах, прошедших шлифовку и полировку поверхности параллельно фронту кристаллизации и после удаления нарушенного слоя в растворе бромметанола обработку селективным травителем (12.5N раствор NaOH, 80°C).

После исследования исходных образцов они подвергались отжигу в насыщенных парах цинка при 840° C в течение 72 ч или в жидком цинке при 650° C в течение 72 ч.

Измерения выполнялись на микрофотолюминесцентном сканере с возможностью спектрального анализа излучения в выбранных точках на поверхности образцов и их люминесцентного картирования на заданной длине волны. Сочетание этих методов позволяет не только идентифицировать природу примеснодефектных центров, но и устанавливать механизмы их формирования. Образцы монтировались на хладопроводе криостата, позволяющего вести измерения при температурах T = 100 - 300 К. Для возбуждения люминесценции использовался Не-Сd-лазер (длина волны излучения 415.6 нм) с системой оптической фокусировки. Мощность возбуждения на поверхности образца составляла 3.0 мВт при диаметре пятна 15 мкм (по уровню 0.5 от максимального значения интенсивности в пятне). Для уменьшения уровня возбуждения использовались оптические светофильтры. Спектральный анализ люминесценции проводился в области длин волн до 1 мкм, использовался дифракционный монохроматор МДР-12 (1200 штр/мм) с обратной линейной дисперсией 2.4 нм/мм, а регистрация осуществлялась охлаждаемым фотоумножителем ФЭУ-83 с синхронным детектированием сигнала. Положение возбуждающего пятна на поверхности образца контролировалось визуально с помощью оптической микроскопической системы. Пространственное сканирование осуществлялось путем перемещния специального стола с криостатом в двух взаимно перпендикулярных направлениях относительно неподвижного возбуждающего лазерного луча по командам управляющего компьютера. Величина шага могла варьироваться в зависимости от характера задачи и в данной работе составляла 35 мкм. В процессе люминесцентного картирования данные измерений выводились на дисплей с цветовой кодировкой интенсивности люминесценции, при этом в "интересной" точке можно было, сделав паузу, развернуть излучение образца в спектр. Полученные в данной работе спектры люминесценции приводятся далее с учетом спектральной чувствительности установки.

3. Результаты и их обсуждение

При анализе полученных в данной работе экспериментальных данных следует учитывать характерный для микролюминесцентных измерений высокий уровень возбуждения, в данном случае $\gtrsim 10^{21}$ квант/см² · с, что более чем на порядок превосходит обычные интенсивности при "макроскопических" измерениях. Результатом этого обычно является относительно большая (по сравнению с примесно-дефектными полосами) интенсивность линий экситонного излучения в спектрах.

Следствием высокого уровня возбуждения в данной работе являлся также фотохромизм свежепротравленных образцов, выражавшийся в уменьшении интенсивности люминесценции под лучом возбуждающего лазера (в \sim (2–2.5) раза за 4–5 мин). Поэтому во избежание ошибок все приведенные в работе спектры люминесценции были получены в стационарных условиях после завершения фотостимулированных процессов формирования центров поверхностной безызлучательной рекомбинации.

Спектры низкотемпературной (гелиевые температуры) макролюминесценции исследованных образцов типичны для излучения нелегированного монокристаллического ZnTe (*p*-тип проводимости), где доминируют линии экситонов, связанных на нейтральных акцепторах [4,5]. Интенсивность излучения в более длинноволновых примесно-дефектных полосах была незначительна, что свидетельствует о хорошем качестве исследованного материала. Это подтверждается также наблюдением люминесценции исследованных кристаллов при комнатной температуре (краевая полоса при ~ 2.27 эВ).

Особенностью ZnTe как широкозонного полупроводника являются относительно большие значения энергий связи экситонов. Для свободного и связанного на мелком нейтральном акцепторе экситонов эти величины составляют 13 и 6–7 мэВ соответственно при энергии ионизации водородоподобного акцептора ~ 62.5 мэВ [6,7]. Относительно большие значения энергии связи приводят к тому, что экситонные переходы могут наблюдаться и при довольно высоких температурах, превышающих 100 К. Кроме того, близкая к квадратичной (против

Рис. 1. Спектры микрофотолюминесценции исследованных материалов при T = 95 К. a, b, c — образцы, полученные с использованием неравновесных парофазных методик 1, 2, 3; d — нелегированный монокристалл, выращенный в квазиравновесных условиях из паровой фазы [17].

(суб)линейной для переходов на локальные уровни [8]) зависимость их интенсивности от уровня возбуждения может приводить к тому, что при сильном возбуждении (импульсный лазер, электронный пучок и т.п.) экситонные линии и при высоких температурах будут попрежнему доминировать в спектрах слабо легированных образцов над примесно-дефектными полосами (см. в [9,10]).

На рис. 1 представлены спектры микролюминесценции исследованных кристаллов при температуре $T = 95 \, \text{K}$. Как видно, спектры исследованных материалов имели близкий набор спектральных линий (с учетом различного спектрального разрешения соответственно величине сигнала). В условиях эксперимента наибольшую интенсивность имели линии из краевой области с энергиями 2.0-2.4 эВ. Наблюдавшиеся для них сверхлинейные зависимости интенсивности от уровня возбуждения с показателем степенной зависимости 1.9-1.4 (бо́льшие значения для линий с большей энергией) свидетельствуют об их экситонной природе [8]. С учетом температурного сдвига [11] наиболее коротковолновая линия 2.367 эВ представляет излучение свободного экситона, а остальные линии — излучение связанных экситонов: 2.361 эВ — с изолированным нейтральным акцептором (очевидно, типичные Cu_{Zn}, Li_{Zn} [4,7]); 2.345 эВ с изолированным двойным нейтральным акцептором (вероятно, Si_{Te} или C_{Te} [12,13]); 2.322 эВ (с фононным повторением 2.296 эВ) — с низкосимметричным (неидентифицированным) комплексом на основе Cu [14].

В длинноволновой части спектров всех исследованных образцов присутствует излучение изоэлектронного центра кислорода O_{Te} в известной полосе ~ 1.88 эВ [15]. Малая интенсивность кислородной полосы в образцах, полученных методом вакуумной пересублимации соеди-

нения, обязана специальной очистке исходных компонентов. В то же время для этих образцов наблюдалась донорно-акцепторная полоса ~ 1.68 эВ, связанная с фоновой примесью Cl в составе глубоких примеснодефектных центров (в том числе акцепторных *A*-центров V_{Zn}Cl_{Te}) [16]. Наконец, в спектрах образцов, полученных в условиях избыточного присутствия Zn в паровой среде (кривая *c*), присутствовала не наблюдавшаяся ранее слабая полоса ~ 1.43 эВ (870 нм), связанная, по-видимому, с центрами, содержащими вакансии Te.

Для сравнения на рис. 1 представлен также спектр нелегированного монокристаллического материала, выращенного в квазиравновесных условиях методом свободного роста из паровой фазы при температуре $\sim 1100^{\circ}$ С со скоростью ~ 50 мкм/ч [17] (кривая *d*). Как видно, несмотря на значительно бо́льшие (на 2 порядка!) скорости структурообразования в разработанных неравновесных технологических методах, в отношении набора и концентрации остаточных стехиометрических дефектов и фоновых примесей полученные материалы не уступали качественным монокристаллам, полученным в квазиравновесных условиях из паровой фазы при значительно более высоких температурах.

Для изучения реакции примесно-дефектного ансамбля кристаллов на термическое воздействие образцы подвергались отжигу в условиях избыточного количества атомов катионной компоненты. Подобный отжиг соединений А^{II}В^{VI} (в паровой фазе или в жидком металле) используется с целью устранения в кристаллах катионных вакансий и их ассоциаций с фоновыми примесями, образующих глубокие компенсирующие акцепторные центры. Очевидным следствием является уменьшение относительных концентрацией катионных примесей замещения и, напротив, увеличение относительных концентраций примесей, занимающих анионные узлы решетки [5,18]. Кроме того, этот отжиг приводит к рассасыванию содержащихся в образцах включений/преципитатов Те и экстрагирования (сегрегации) содержащихся в них примесей [19,20].

В данной работе отжиг образцов в насыщенных парах цинка при 840°C в течение 72 ч или в жидком цинке при 650°C в течение 850 ч не привел к усилению их люминесценции (для образца, полученного по методике 1, интенсивность даже несколько уменьшилась). По спектрам можно отметить лишь некоторую перестройку среди излучающих экситонных комплексов новые линии связанных экситонов 2.333 и 2.316 эВ (с LO-фононным повторением 2.288 эВ) — и исчезновение в материале, полученном по методике 1, примеснодефектных А-центров V_{Zn}Cl_{Te} (рис. 2). Если уменьшение интенсивностей линий, связанных с центрами, включающими катионные вакансии и катионные примеси замещения, можно было бы, согласно общей тенденции, отнести на счет уменьшения их концентрации, то этот же результат в отношении других линий спектра (в том числе излучения свободных экситонов) определенно свидетельствует о малой эффективности проведенного

Рис. 2. Спектры микрофотолюминесценции при T = 95 К. a, b — образцы 1,2 (см. спектры a, b рис. 1) после отжига в насыщенных парах цинка при 840° С в течение 72 ч.

отжига. В целом уменьшение концентрации ростовых дефектов в объемном нелегированном ZnTe остается проблемным (см., например, [20]).

С целью выяснения однородности материалов по объему полученных слитков, а также изучения влияния межзеренных (межсубзеренных) и двойниковых границ на пространственное распределение точечных дефектов и примесей в пределах монозерен была использована техника микролюминесцентного картирования образцов. Для выявления межзеренных границ и дефектов кристаллической структуры внутри зерен поверхность образцов обрабатывалась селективным травителем (12.5N раствор NaOH, 80°C). Максимальный размер зерен для материала, полученного по технологии 1, достигал 1.5 мм и до 1 мм — в остальных случаях. Измерения проводились на длинах волн, соответствующих спектральным максимумам на рис. 1, 2. Общий вид спектров в пределах полученных слитков изменялся незначительно, исключая те локальные области кристаллизации, расположение которых в реакторах могло предполагать высокую турбулентность газовых потоков в их окрестностях. Для демонстрации результатов картирования на рис. З приведены данные для образца, полученного в условиях конгруэнтной сублимации предварительно синтезированного бинарного соединения и движения пара в реакторе в режиме газодинамического потока, спектр которого приведен на рис. 1 (кривая а). Рис. 3, а фотография сканированной с шагом 35 мкм области размером 2.45×2.45 мм, рис. 3, b — ее люминесцентный образ на длине волны 525 нм (2.361 эВ, экситон на нейтральном акцепторе Cu_{Zn}/Li_{Zn}). Как видно из рис. 3, а, даже соседствующие монозерна могли иметь различную ориентацию полярной оси на поверхности роста, которая "выделялась" при селективном травлении характерным рельефом поверхности (на черно-белой фотографии {111} А — светлые (зеркальные) области, {111} В — темные). Одновременное присутствие вдоль направления роста монозерен с ориентацией {111} А и {111} В является признаком неравновесных условий

Рис. 3. Люминесцентная картограмма образца, полученного в условиях конгруэнтной сублимации предварительно синтезированного бинарного соединения и движения пара в реакторе в режиме газодинамического потока (спектр *a* на рис. 1). *a* — фотография сканированной с шагом 35 мкм области размером 2.45 × 2.45 мм, *b* — ее люминесцентный образ на длине волны 525 нм (2.361 эВ).

кристаллизации для теллуридов цинка и кадмия [21] и связано, вероятно, с флуктуациями в составе паровой среды. В пределах рассмотренной области образца интенсивность люминесценции изменялась в ~ 6 раз, но в пределах отдельного монозерна не более чем в 2 раза, при этом для больших зерен наблюдались и большие интенсивности, а ориентация их полярных поверхностей значения не имела. Идентичные по люминесцентному "рельефу" картограммы были получены при сканировании этой же области и на длинах волн других максимумов спектра а на рис. 1: 534 нм (2.322 эВ, экситон на низкосимметричном центре Cu) и 740 нм (1.68 эВ, донорноакцепторные переходы с участием центров Cl). Для каждой длины волны вариации интенсивности люминесценции внутри зерен были незначительны и люминесцентный контраст вблизи межзеренных/двойниковых границ и других протяженных дефектах структуры отсутствовал (ср. с данными [9,19,20]). Отсутствие ассоциатов остаточных дефектов характерно для неравновесных условий роста с высокими скоростями кристаллизации и движении пара в реакторах в режиме газодинамических потоков [22]. Однако и после отжига образцов вид их микролюминесцентных картограмм практически не изменялся. Это, очевидно, означает, что в исследованных материалах безызлучательные центры, контролирующие рекомбинационные процессы, являются малоподвижными и термостабильными комплексами, образовавшимися в процессе роста в результате ассоциации стехиометрических дефектов (и, возможно, фоновых примесей) и относительно равномерно распределенными по объему кристаллической решетки.

4. Заключение

Хотя высокотемпературные (100 К) люминесцентные спектры ZnTe значительно менее информативны, чем низкотемпературные, приведенные данные свидетельствуют о том, что полученные неравновесными парофазными методами материалы в отношении набора и концентрации остаточных дефектов и фоновых примесей не уступают качественным монокристаллам, полученным в квазиравновесных условиях из паровой фазы при значительно более высоких температурах. За исключением размера зерен в текстуре, значительное (на 2 порядка!) увеличение скорости кристаллизации не привело к существенному изменению природы процессов кристаллизации на микроуровне. Вместе с тем концентрация безызлучательных центров оставалась довольно высокой, особенно в мелких зернах. Малая эффективность термоотжига и отсутствие люминесцентного контраста на границе монокристаллических зерен указывают на то, что в исследованных материалах доминирующие безызлучательные ростовые дефекты являются малоподвижными и термостабильными комплексами, образовавшимися в результате ассоциации стехиометрических дефектов и, возможно, фоновых примесей.

Работа выполнена в рамках проекта РФФИ № 04-02-17078-а и Программы Отделения физических наук РАН "Новые материалы".

Список литературы

- J. Gu, K. Tonomura, N. Yoshikawa, T. Sakaguchi. J. Appl. Phys., 44, 4692 (1973).
- [2] В.В. Ушаков, Ю.В. Клевков. ФТП, 37, 1067 (2003).
- [3] В.В. Ушаков, Ю.В. Клевков. ФТП, 37, 1298 (2003).
- [4] N. Magnea, D. Bensahel, J.L. Pautrar, J.C. Pfister. Phys. Status. Solidi B, 94, 627 (1979).
- [5] P.J. Dean, H. Venghaus, J.C. Pfister, B. Schaub, J. Marine. J. Luminesc., 16, 363 (1978).
- [6] D.C. Herbert, P.J. Dean, H. Venghaus, J.C. Pfister. J. Phys. C, 13, 3641 (1978).
- [7] H. Venghaus, P.J. Dean. Phys. Rev. B, 21, 1596 (1980).
- [8] T. Schmidt, K. Lischka, W. Zulehner. Phys. Rev. B, 45, 8989 (1992).
- [9] D. Bensahel, N. Magnea, M. Dupuy. Sol. St. Commun, 30, 467 (1979).
- [10] C.F. Klingshirn, W. Maier, B. Hönerlage, H. Haug, S.W. Koch. Sol. St. Electron., 21, 1357 (1978).
- [11] R. Pässler, E. Griebl, H. Riepl, G. Lautner, S. Bauer, H. Preis, W. Gephardt, B. Buda, D.J. As, D. Schikora, K. Lischka, K. Papagelis, S. Ves. J. Appl. Phys., 86, 4403 (1999).
- [12] M. Magnea, J.L. Pautrar, L.S. Dang, R. Romestain, P.J. Dean. Sol. St. Commun, 47, 703 (1983).
- [13] P.J. Dean, M.J. Kane, N. Magnea, F. Maigret, L.S. Dang, A. Nahmani, R. Romestain, M.S. Skolnick. J. Phys. C, 18, 6185 (1985).
- [14] P.O. Holtz, B. Monemar, H.P. Gislason, N. Magnea. J. Luminesc., 34, 245 (1986).
- [15] J.L. Merz. Phys. Rev., 176, 961 (1968).
- [16] J. Bittebierre, R.T. Cox. Phys. Rev. B, 34, 2360 (1986).
- [17] Yu.V. Korostelin, V.I. Kozlovsky, P.V. Shapkin. J. Cryst. Growth, 214/215, 870 (2000).
- [18] M. Magnea, J.L. Pautrar, L.S. Dang, R. Romestain, P.J. Dean. Sol. St. Commun., 47, 703 (1983).
- [19] D. Bensahel, M. Dupuy, J.C. Pfister. Phys. Status Solidi A, 55, 211 (1979).
- [20] D. Bensahel, M. Dupuy. Phys. Status Solidi A, 56, 99 (1979).
- [21] Ю.В. Клевков, В.П. Мартовицкий, С.А. Медведев. ФТП, 37, 129 (2003).
- [22] K. Durose, G.J. Russell. J. Cryst. Growth, 86, 471 (1988).

Редактор Л.В. Шаронова

Microphotoluminescence of an undoped bulk zinc telluride grown by nonequilibrium vapour-phase methods

V.V. Ushakov, J.V. Klevkov

P.N. Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia

Abstract Microphotoluminesce spectral analysis and imaging have been applied for studying properties of an undoped bulk ZnTe grown in highly nonequilibrium vapour-phase processes with participation of chemical reactions.