удк 621.315.592 Формирование наноструктур в системе Ga₂Se₃/GaAs

© Н.Н. Безрядин[¶], Г.И. Котов, И.Н. Арсентьев*, А.А. Стародубцев

Воронежская государственная технологическая академия, 394000 Воронеж, Россия * Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 27 декабря 2004 г. Принята к печати 17 января 2005 г.)

Методом атомно-силовой микроскопии исследовалась топология поверхностей GaAs (100) и (111) до и после кратковременных обработок в парах селена. Из анализа результатов этих исследований в сочетании с эллипсометрией и электронной микроскопией предложен механизм образования и роста наноостровков и слоя Ga₂Se₃ (110) на поверхностях GaAs (100) и (111).

Использование арсенида галлия в микроэлектронике ограничивается присутствием на реальной поверхности этого полупроводника высокой плотности поверхностных электронных состояний (ПЭС) [1]. Для снижения плотности ПЭС используется халькогенидная пассивация [1-3]. Уже в первых работах, посвященных пассивации поверхности GaAs в сульфидных растворах, наблюдалось заметное возрастание интенсивности фотолюминесценции полупроводника [2], обусловленное существенным снижением скорости поверхностной безызлучательной рекомбинации, которая становится сравнимой со скоростью безызлучательной рекомбинации на единственной известной идеальной гетерогранице GaAs/AlGaAs [3]. Из исследования электрофизических характеристик диодов Шоттки типа Me-Ga₂Se₃(110)-GaAs (Me — металл) методами вольт-фарадных и вольт-амперных характеристик (ВАХ) установлено, что экспериментальные значения эффективной высоты барьеров Шоттки с контактами из алюминия уменьшаются от 0.75 до 0.50 эВ, а с контактами из золота увеличиваются от 0.84 до 0.94 эВ. Эти факты говорят о снижении плотности ПЭС и откреплении уровня Ферми вблизи поверхности GaAs в результате халькогенидной пассивации [4]. Методом изотермической сканирующей спектроскопии глубоких уровней были определены энергии электронных состояний относительно дна зоны проводимости в объеме (0.20, 0.32, 0.68 эВ) и на поверхности (0.40 эВ) арсенида галлия. Показано, что после обработки поверхности в парах селена отсутствует уровень с энергией активации 0.40 эВ, ответственный за плотность ПЭС [5]. В процессе термической обработки подложек арсенида галлия в парах селена происходит реконструкция полярных поверхностей (100) и (111) с последующим формированием тонкого псевдоморфного слоя $Ga_2Se_3(110)$ [5].

По мнению авторов работы [5], именно образование такого слоя, сопровождающегося реконструкцией поверхности арсенида галлия, и является причиной уменьшения плотности ПЭС. Действительно, наименьшее значение таковой ($\sim 10^{11}$ см⁻² эВ⁻¹) наблюдается

при условии минимального рассогласования параметров кристаллических решеток в гетеросистеме. Такое условие для гетеросистемы $Ga_3Se_{3x}Te_{3(1-x)}/GaAs$ выполняется при x = 0.43, поскольку твердый раствор такого состава имеет ту же постоянную кристаллической решетки, что и GaAs. Возникающая реконструкция поверхности обеспечивает пассивирующий эффект (минимальную плотность ПЭС) только при продолжительности обработки поверхности арсенида галлия в парах селена менее 15 мин, проводимой в технологических условиях, описанных в работах [4-6]. Таким образом, с точки зрения электрофизических свойств границы раздела $Ga_2Se_3(110)/GaAs$ (минимум плотности ПЭС) наибольший интерес представляют образцы, полученные при кратковременной обработке (менее 15 мин). Поэтому в данной работе с целью выяснения механизма образования гетеросистемы Ga₂Se₃/GaAs поверхность GaAs исследовалась до и после кратковременных обработок в парах селена с помощью атомно-силовой микроскопии (АСМ) в сочетании с эллипсометрией и электронной микроскопией.

Исследования в просвечивающем электронном микроскопе типа H-800 проводились с целью выбора образцов с монокристаллическим псевдоморфным слоем селенида галлия для изучения их поверхности методом ACM на приборе FEMTOSCAN-001. При этом микродифракционное изображение поверхности соответствовало представленному на рис. 1 в работе [5]. Эти же образцы изучались методом ВАХ диодов Шоттки, сформированных термическим открытым напылением металла (Al, Ni, Ag, Au) на поверхность подложки сразу после обработки в парах селена. Для исследования в атомно-силовом микроскопе выбирались образцы, ВАХ которых соответствовали состоянию поверхности GaAs без ПЭС [5].

В результате анализа эллипсометрических измерений на приборе типа ЛЭФ-3М, сделанных на поверхности GaAs после обработки в парах селена, установлены следующие кинетические закономерности формирования системы GaAs $(100)/Ga_2Se_3(110)$ на начальных этапах процесса: из температурных зависимостей параметра эллипсометрических измерений, имеющего размерность

[¶] E-mail: phys@vgta.vrn.ru

Рис. 1. АСМ-изображение (a) и профиль сечения (b) исходной поверхности GaAs(100).

Рис. 2. АСМ-изображение и профиль сечения поверхности GaAs(100), обработанной в парах селена в течение 3 мин.

длины (в дальнейшем толщина), было обнаружено, что скорость роста слоев Ga₂Se₃ в зависимости от продолжительности процесса обработки ограничивается сначала скоростью химической реакции гетеровалентного

замещения ($E_a = 4.75$ эВ), затем, по мере увеличения толщины слоя, механизм ограничения становится смешанным (диффузионно-кинетическим, $E_a = 1.04$ эВ), и далее скорость роста ограничивается диффузией селена или продуктов реакции ($E_a = 0.40$ эВ) через образовавшийся слой селенида галлия [7].

В данной работе использовался высокоомный (~ 10^{16} см⁻³) арсенид галлия *n*-типа, поверхность которого химико-динамически полировалась (ХДП) в растворе $H_2SO_4:H_2O_2:H_2O=4:1:1$, затем в растворе $HC1:H_2O=1:10$ удалялись остаточные оксиды. После этого подложки промывались в деионизованной воде и высушивались в центрифуге. Сканирование поверхности в атомно-силовом микроскопе производилось в масштабах: 5000×5000 , 1500×1500 и 600×600 нм. На рис. 1 представлены АСМ-изображение и профиль сечения исходной, сразу после ХДП, поверхности GaAs (100).

После обработки арсенида галлия в течение 3 мин на поверхности наблюдается образование островков фазы $Ga_2Se_3(110)$ (рис. 2). Видно, что на поверхности (100) образуются островки с латеральными размерами порядка 100–200 нм и высотой 50–70 нм с плотностью 10^8 см⁻².

С увеличением времени обработки эти островки расширяются, достигая при временах ~ 5 мин латеральных размеров $\sim 400-500$ нм (рис. 3).

После обработки арсенида галлия в течение 10–15 мин характерный вид исходной поверхности и островки не наблюдаются, поверхность становится более однородной (рис. 4). Амплитуда высот шерохова-

Рис. 3. АСМ-изображение и профиль сечения поверхности GaAs(100), обработанной в парах селена в течение 5 мин.

Физика и техника полупроводников, 2005, том 39, вып. 9

Рис. 4. АСМ-изображение и профиль сечения поверхности GaAs(100), обработанной в парах селена в течение 15 мин.

тостей не превышает 5 нм в отличие от исходной и обработанной в течение времени от нескольких секунд до 10 мин поверхности GaAs(100). Как выше уже отмечалось, в данной работе изучались образцы, на поверхности которых существует сплошной монокристаллический псевдоморфный слой Ga₂Se₃(110) [5]: на микродифракционном изображении всех участков поверхности присутствуют рефлексы от фазы Ga₂Se₃(110) и для всех участков поверхности из анализа ВАХ следует вывод об откреплении уровня Ферми и соответственно — о снижении плотности ПЭС. Эти факты в рамках модели, рассмотренной в работе [5], объясняются присутствием на поверхности сплошного монокристаллического слоя Ga₂Se₃(110). Здесь отметим, что соответствие состава образующихся в этих процессах слоев стехиометрии Ga_2Se_3 установлено ранее в работе [8].

С целью выяснения природы появления островков на поверхности гетеросистемы результаты эллипсометрических измерений анализировались совместно с изображениями этих же поверхностей в микроскопе. Островки новой фазы при временах обработки ~ 3 мин (рис. 2) имеют размеры ~ $200 \times 200 \times 60$ нм и распределены по поверхности с плотностью 10^8 см⁻². Если все количество вещества этих островков распределить в однородном по толщине слое Ga₂Se₃, то его толщина составит ~ 2.5 нм. Для этого же образца из кинетических исследований с помощью эллипсометра следует, что образовавшийся слой должен иметь толщину ~ 7.5 нм. Данное соотношение толщины сохраняется при временах обработки до 10 мин, когда можно зарегистрировать

отдельные островки фазы Ga_2Se_3 (рис. 2 и 3). Установленная особенность роста Ga_2Se_3 на поверхности GaAs находит объяснение, если процесс формирования рассматривать в рамках двух обусловливающих друг друга механизмов:

 образование Ga₂Se₃ в результате гетеровалентного замещения мышьяка в решетке арсенида галлия на селен (адсорбированный на поверхности образца) по реакции

$$3GaAs + 3Se \rightarrow Ga_2[V_{Ga}]Se_3 + Ga + 3As;$$
 (1)

— сверхстехиометричные для Ga_2Se_3 атомы галлия, высвободившегося после протекания реакции (1), оказываются на поверхности образца и участвуют в образовании Ga_2Se_3 , непосредственно реагируя с селеном по рекации

$$3Ga + 3Se \rightarrow Ga_2[V_{Ga}]Se_3.$$
 (2)

Эта реакция обеспечивает второй механизм формирования селенида галлия в процессе термического отжига GaAs в парах селена.

Доставка сверхстехиометричного для Ga₂Se₃ галлия на поверхность системы происходит через образующийся слой селенида. Этот диффузионный процесс представляется весьма вероятным, поскольку Ga₂Se₃, кристаллизуясь в решетке сфалерита, обладает большой ($\sim 10^{21}$ см⁻³) концентрацией катионных стехиометрических вакансий.

Дальнейший процесс образования селенида галлия будет протекать как в объеме по реакции (1), так и на поверхности по реакции (2). По мере увеличения продолжительности процесса количество и размеры островков увеличиваются, покрывая поверхность GaAs(100) сплошным слоем фазы Ga₂Se₃(110) (рис. 4). Таким образом, в выбранных технологических условиях отмеченная выше особенность роста объясняется тем, что 2/3 толщины слоя Ga₂Se₃, измеряемой эллипсометрическим методом, растет в объеме арсенида галлия по реакции (1), а оставшаяся третья часть фазы $Ga_2Se_3(110)$ образуется из выделяющегося сверхстехиометричного галлия по реакции (2). Подобные процессы наблюдаются при отжиге в парах селена подложек GaAs(111). Происходит только смещение температурных режимов, соответствующих состояниям поверхности GaAs(100), обработанной в парах селена, и изображенным на рис. 2-4, в область более высоких температур примерно на 20 К. Это может быть следствием различия констант скоростей химической реакции на поверхностях (100) и (111) GaAs.

Таким образом, из анализа совокупности результатов эллипсометрических исследований и атомно-силовой микроскопии поверхности арсенида галлия, обработанной в парах селена, следует, что образование наноостровков и нанослоя Ga₂Se₃(110) происходит по двум последовательным механизмам с соблюдением стехиометрии. Количество островков, скорость их образования и формирования в итоге сплошного слоя Ga₂Se₃(110) определяются технологическими режимами обработки поверхности GaAs в парах селена. Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 03-02-96480).

Исследования на атомно-силовом микроскопе проведены в Центре коллективного пользования научным оборудованием Воронежского государственного университета.

Список литературы

- [1] В.Н. Бессолов, М.В. Лебедев. ФТП, 32, 1281 (1998).
- [2] B.J. Skromme, C.J. Sandroff, E. Yablonovich, T.J. Gmitter. Appl. Phys. Lett., 51, 2022 (1987).
- [3] E. Yablonovitch, C.J. Sandroff, R. Bhat, T. Gmitter. Appl. Phys. Lett., 51, 439 (1987).
- [4] Б.И. Сысоев, Н.Н. Безрядин, Г.И. Котов, В.Д. Стрыгин. ФГП, 27, 131 (1993).
- [5] Б.И. Сысоев, Н.Н. Безрядин, Г.И. Котов, В.Д. Стрыгин. ФТП, 29, 24 (1995).
- [6] Б.Л. Агапов, И.Н. Арсентьев, Н.Н. Безрядин, Г.И. Котов, М.П. Сумец. ФТП, 33, 712 (1999).
- [7] Н.Н. Безрядин, Г.И. Котов, И.Н. Назаренко, А.Н. Зяблов, А.А. Стародубцев. Конденсированные среды и межфазные границы, 6, 225 (2004).
- [8] B.I. Sysoev, V.D. Strygin, G.I. Kotov, E.N. Nevrueva, E.P. Domashevskaya. Phys. Status Solidi A, 129, 207 (1992).

Редактор Т.А. Полянская

Nanostructures formation in a $Ga_2Se_3/GaAs$ system

N.N. Bezryadin, G.I. Kotov, I.N. Arsentyev*, A.A. Starodubtsev

Voronezh State Technological Academy, 394000 Voronezh, Russia * loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract Topology of surfaces of arsenide gallium GaAs(100) and (111) before and after the short processing in selenium vapour was researched by atomic-force microscope method. From analysis of the results of these investigations in combination with electronic microscope and ellipsometry meazurements the mechanism of the formation and growing of gallium selenide $Ga_2Se_3(110)$ nanoislands and layer on gallium arsenide GaAs(100) and (111) is offered.