Анизотропия показателя преломления и электрооптический эффект в кристаллах $TI_{1-x}Cu_xGaSe_2$ ($0 \le x \le 0.02$)

© А.Н. Георгобиани[¶], А.Х. Матиев^{¶¶}*, Б.М. Хамхоев*

Физический институт им. П.Н. Лебедева Российской академии наук, 117924 Москва, Россия * Ингушский государственный университет, 386100 Магас, Россия

(Получена 23 ноября 2004 г. Принята к печати 26 ноября 2004 г.)

Изучалась анизотропия показателя преломления и электрооптический эффект в кристаллах $Tl_{1-x}Cu_xGaSe_2$ ($0 \le x \le 0.02$). Показано, что показатель преломления растет при приближении к собственной полосе поглощения. Установлено, что, когда свет и внешнее электрическое поле направлены вдоль выделенной кристаллографической оси *c*, электрооптический эффект является квадратичным; если же поле перпендикулярно оси *c*, а свет направлен вдоль нее, то электрооптический эффект является линейным.

Известно, что соединение TlGaSe₂ кристаллизуется в моноклинной решетке, но имеет особенности: a = b(для моноклинной сингонии $a \neq b$) и угол β мало отличается от 90° [1]. Монокристаллы $Tl_{1-x}Cu_xGaSe_2$ $(0 \le x \le 0.02)$, выращенные из расплава методом Бриджмена-Стокбаргера, также кристаллизуются в моноклинной решетке типа TlGaSe2 и являются твердыми растворами [2]. Так как исследуемые кристаллы являются слоистыми, с большой долей вероятности можно считать, что они обладают анизотропными оптическими свойствами. В этом плане важным является изучение оптических свойств исследуемых кристаллов $Tl_{1-x}Cu_xGaSe_2$ (0 < x < 0.02) в направлениях, перпендикулярном и параллельном плоскости слоя. Для этого необходимо направлять свет параллельно и перпендикулярно плоскости скола. Так как не представляется возможным получить образцы большой площади, имеющие поверхности, перпендикулярные к плоскости спайности, изучение анизотропии оптических свойств нами проводилось при условии изменения угла падения плоскополяризованного света. Образцы для измерения, имеющие хорошее оптическое качество и одинаковую толщину, получались скалыванием плоскопараллельных пластинок от монокристаллического слитка. Направляя линейно поляризованный свет на поверхность скола под различными углами, определяли коэффициент прозрачности на спектрально-вычислительном комплексе СДЛ-2, приспособленном для этих целей. Показатель преломления определяли по методике [3,4] на установке с ЭВМ. При исследовании оптических постоянных структуру кристаллов типа TlGaSe2 мы считали псевдотетрагональной.

В данной работе приведены результаты экспериментальных исследований анизотропии показателя преломления α и квадратичного электрооптического эффекта в кристаллах $Tl_{1-x}Cu_xGaSe_2$ ($0 \le x \le 0.02$). Коэффициент поглощения энергии фотона на краю собственной полосы поглощения не зависит от угла падения света, тем не менее отношение $\alpha_{\parallel}/\alpha_{\perp} = 3-5$. Коэффициент поглощения α_{\parallel} определяли при условии $\mathbf{E} \perp L$, $\mathbf{V} \perp L$, a_{\perp} — при условии $\mathbf{E} \perp L$, $\mathbf{V} \parallel L$, где символ *L* обозначает плоскость скола, \mathbf{E} — направление вектора электрического поля, \mathbf{V} — направление распространения света.

На рис. 1, *a*, *b* представлены дисперсионные кривые показателия преломления $n_0 = n_{\perp}$ ($\mathbf{E} \perp L$, $\mathbf{V} \perp L$) и n_{\parallel} ($\mathbf{E} \perp L$, $\mathbf{V} \parallel L$), где n_0 — показатель преломления луча, распространяющегося вдоль оси *c*. Как следует из рис. 1, в интервале длин волн $\lambda = 0.6-0.66$ мкм $n_0 = n_{\perp} < n_{\parallel}$. Из рис. 1 следует, что показатели преломления растут с приближением к собственной полосе поглощения ($E'_g = 2.03$ эВ) [5].

Довольно хорошим приближением, в котором сохраняется физический смысл параметров осциллятора [6], для описания представленных данных является одночленное соотношение Зельмейера:

$$n^{2}(\lambda) - 1 = S_{0}\lambda_{0}^{2} \left[1 - \left(\frac{\lambda_{0}}{\lambda}\right)^{2} \right]^{-1}, \qquad (1)$$

где λ_0 — среднее положение осциллятора, S_0 — средняя сила осциллятора.

Используя зависимость $(n^2 - 1)^{-1}$ от λ^2 (рис. 1, *a*, *b*), можно определить величины S_0 и λ_0 для определенного направления распространения света. В данном случае определяются две пары параметров $S_{0\perp}$, $\lambda_{0\perp}$, $S_{0\parallel}$, $\lambda_{0\parallel}$. Они относятся к показателям преломления в направлениях, перпендикулярном $(n_0 = n_{\perp})$ и параллельном n_{\parallel} оси кристалла *с*. Значения параметров $S_{0\perp}$, $\lambda_{0\perp}$ и $S_{0\parallel}$, $\lambda_{0\parallel}$, определенные из рис. 1, представлены в таблице.

Значения параметров $S_{0\perp}$, $\lambda_{0\perp}$, $S_{0\parallel}$, $\lambda_{0\parallel}$

	$S_{0\perp}, 10^{-8} \mathrm{cm}^{-2}$	_{λ0⊥} , 10 ⁵ см ⁻⁵	$S_{0\parallel}, 10^{-8} \mathrm{cm}^{-2}$	λ ₀ , 10 ⁵ см ⁻⁵
TlGaSe ₂	8.18	0.711	6.00	0.713
Tl _{0.99} Cu _{0.01} GaSe ₂	9.00	0.711	6.92	0.714
$Tl_{0.98}Cu_{0.02}GaSe_2$	9.62	0.710	7.03	0.715

[¶] E-mail: georg@sci.lebedev.ru

^{¶¶} E-mail: Ing_gu@southnet.ru

Рис. 1. Дисперсионные зависимости показателя преломления кристаллов: a — TlGaSe₂; b — Tl_{0.98}Cu_{0.02}GaSe₂. Линии $1 - n_{\parallel}, 2 - n_{\perp}$.

Исследование электрооптических (ЭО) свойств в кристаллах $Tl_{1-x}Cu_xGaSe_2$ ($0 \le x \le 0.02$) проводилось в переменном и постоянном электрических полях по обычной поляризационно-оптической методике при комнатной температуре [3,6]. Поляризационно-оптическим методом можно измерять лишь двулучепреломление Δn , и оно не позволяет определить знак ЭО коэффициентов r_{ijk} , R_{ijkl} . При исследовании индуцированного двулучепреломления в кристаллах $Tl_{1-x}Cu_xGaSe_2$ ($0 \le x \le 0.02$) свет и внешнее, низкочастотное (до ~ $10^4 \Gamma$ ц) электрическое поле **Е** были направлены перпендикулярно слоям. При этом разность величины $\Gamma(I)$ в исследуемой пластинке, возникающая

под действием внешнего электрического поля, равна

$$\Gamma(I) = \frac{2\pi(n_1 - n_2)}{\lambda} d = 2\pi d \,\frac{\Delta n}{\lambda},\tag{2}$$

где d — длина оптического пути света в образце, λ — длина волны, Δn — изменение двулучепреломления, $I = J/J_0$ — относительное значение интенсивности прошедшего света, J_0 , J — интенсивности света, падающего на кристал и вышедшего из него.

Характер зависимости индуцированного двулучепреломления в кристаллах $Tl_{1-x}Cu_xGaSe_2$ ($0 \le x \le 0.02$) остается квадратичным по крайнем мере в пределах исследованных электрических полей ($\mathbf{E} \le 5 \, \mathrm{\kappa B/cm}$), что хорошо видно из рис. 2 (кривые 1-2). Используя зависимость Δn от напряженности электрического поля при вышеуказанной геометрии эксперимента, было рассчитано значение величины $n_0^3 r_{13} - n_e^3 r_{33}$, где r_{ij} отличные от нуля электрооптические коэффициенты для данной геометрии эксперимента. Оно оказалось равным $2 \cdot 10^{-9}$ ед. СГСЭ.

Далее нами были проведены исследования зависимости Δn от λ . Измерения показали, что с уменьшением длины волны падающего света и с приближением к краю поглощения Δn растет, а с ростом *x* эта зависимость имеет более крутой характер (рис. 2, кривые 4–6).

При измерении индуцированного двулучепреломления оказалось, что Δn в постоянном поле и Δn в переменном поле отличаются друг от друга, и это различие увеличивается с приближением к краю оптического поглощения (это, по-видимому, связано с неравномерным распределением электрического поля по кристаллу в случае постоянного поля). Наличие фотоэффекта в

Рис. 2. Зависимость Δn от напряженности электрического поля при $\lambda = 0.63$ мкм (кривые 1–3) и от длины волны при E = 3.5 кВ/см (кривые 4–6): 1, 4 — TlGaSe₂; 2, 5 — Tl_{0.98}Cu_{0.02}GaSe₂; 3, 6 — Tl_{0.99}Cu_{0.01}GaSe₂.

этих кристаллах при $\lambda \approx 0.63$ мкм свидетельствует о возможности скопления объемных зарядов на границе светового луча.

Возникающие под действием света электронно-дырочные пары могут создать на периферии луча большие объемные заряды, уменьшающие внутреннее поле в кристаллах [7]. Следует отметить, что кристаллы TlGaSe₂ имеют точечную группу симметрии C_c по данным [1] и $P2_1/m$ — по [8]. Они обладают "псевдотетрагональной" моноклинной структурой. Моноклинной сингонии свойствен линейный электрооптический эффект. Для рассматриваемого класса соединений (типа TlGaSe₂) a = b и β ЭО эффект мало отличается от квадратичного эффекта (90°). Поэтому можно предположить, что в определенном кристаллографическом направлении (например, в направлении оси c) более вероятно наблюдение квадратичного эффекта.

Список литературы

- D. Muller, H. Hahn. Zs. Anorg. Allgem. Chem., 438, 258 (1978).
- [2] Г.Д. Гусейнов, А.У. Мальсагов, И.М. Берфирер, А.А. Абдуллаев. Изв. вузов, Физика, 3, 124 (1984).
- [3] А.А. Агасиев, А.Х. Зейналов, А.А. Мамедов, Н.К. Эфендиев. ФТП, 6, 649 (1972).
- [4] Г.А. Ахундов, С.А. Мусаев, А.Э. Бахышов, Н.М. Гасанлы, Л.Г. Мусаева. ФТП, 9, 142 (1975).
- [5] А.Э. Бахышев, Л.Г. Мусаева, А.А. Лебедев, М.А. Якобсон. ФГП, 9, 1548 (1975).
- [6] А.А. Арабидзе, Д.Д. Халилова, В.Д. Кокоева. Сообщ. АН ГССР, **50**, 59 (1968).
- [7] И.И. Андрианова, А.А. Бережной, Ю.В. Попов. Опт. и спектр., 90, 957 (1971).
- [8] T.J. Issaev. J. Appl. Cryst. Allogr., 6, 413 (1973).

Редактор Т.А. Полянская

Of the refraction index anisotropy and an electrooptic effect in $TI_{1-x}Cu_xGaSe_2$ ($0 \le x \le 0.02$) crystals

A.N. Georgobiani, A.Kh. Matiyev, B.M. Khamhoyev*

The Physical Institute, Russian Academy of Sciences, 117924 Moscow, Russia * Ingush State University, 386100 Magas, Russia

Abstract The refraction index anisotropy and the electrooptic effect (EO) have been studied on $\text{Tl}_{1-x}\text{Cu}_x\text{GaSe}_2$ ($0 \le x \le 0.02$) crystals. It is shown that the refraction indexes are increasing when approaching to their own absorption band. It is established that the light and the external electric field, when being directed along the *c*, axis, make EO effect quadratic. If the electric field is perpendicular to the *c* axis while the light is directed along it, the EO effect is to be linear.