Энергетические параметры двухэлектронных центров олова в PbSe

© С.А. Немов, Ф.С. Насрединов[¶], П.П. Серегин, Н.П. Серегин*, Э.С. Хужакулов⁺

Санкт-Петербургский государственный политехнический университет,

* Институт аналитического приборостроения Российской Академии наук,

198103 Санкт-Петербург, Россия

⁺ Ташкентский областной государственный педагогический институт,

(Получена 9 сентября 2004 г. Принята к печати 27 сентября 2004 г.)

Получены соотношения, позволяющие на основе экспериментальной температурной зависимости концентрации носителей тока определить корреляционную энергию U и температурную зависимость химического потенциала F для двухэлектронных центров олова в селениде свинца. Для твердых растворов Pb_{1-x-y}Sn_xNa_ySe химический потенциал в области температур 100–600 К находится ниже вершины валентной зоны E_v , зависимости F(T) носят линейный характер, причем экстраполяция к T = 0 К дает значение $E_V - F = 210 \pm 10$ мэВ. Для корреляционной энергии двухэлектронных центров олова в PbSe получено значение $U = -80 \pm 20$ мэВ.

1. Введение

Примесь олова в селениде свинца PbSe согласно данным по явлениям переноса [1] и данным мессбауэровской спектроскопии на изотопе ¹¹⁹Sn [2], является донором: для вырожденных электронных образцов $Pb_{1-x}Sn_xSe$, содержащих сверхстехиометрический свинец, мессбауэровские спектры отвечали двухвалентному олову Sn²⁺, для перекомпенсированных вырожденных дырочных образцов $Pb_{1-x-y}Sn_xNa_ySe$ $(y \gg 2x)$ — четырехвалентному олову Sn⁴⁺, а для частично компенсированных вырожденных дырочных образцов $Pb_{1-x-y}Sn_xNa_ySe$ ($y \le 2x$) — суперпозиции двухвалентного и четырехвалентного олова. Предполагается, что атомы олова замещают двухвалентный свинец в кубической решетке PbSe и образуют донорные состояния: линия Sn²⁺ в мессбауэровских спектрах отвечает нейтральным [Sn]°, а линия Sn⁴⁺ — двукратно ионизованным состояниям [Sn]²⁺ донорного центра олова. Тот факт, что в мессбауэровских спектрах только линия ${\rm Sn}^{4+}$ (без линии ${\rm Sn}^{2+}$) обнаруживается лишь для сильно перекомпенсированных образцов $Pb_{1-x-y}Sn_xNa_ySe$, указывает на то, что уровни олова лежат на фоне валентной зоны. Отсутствие в мессбауэровских спектрах частично компенсированных образцов линии Sn³⁺ (однократно ионизованного донорного центра олова) свидетельствует о том, что олово образует в PbSe двухэлектронные донорные центры с отрицательной корреляционной энергией.

Таким образом, в $Pb_{1-x}Sn_xSe$ на фоне валентной зоны образуется две полосы локализованных состояний олова, разделенных на величину корреляционной энергии

$$U = E_1 - E_2, \tag{1}$$

где E_1 — энергия уровня, на который садится электрон, превращая центр Sn³⁺ в центр Sn²⁺; E_2 — энергия

уровня, на который садится электрон, превращая центр Sn^{4+} в центр Sn^{3+} . Плотность состояний как функция энергии в запрещенной зоне $Pb_{1-x-y}Sn_xNa_ySe$ была предложена авторами [2]. Аналогичная ситуация возникает и для центров таллия в халькогенидах свинца [3]. Цель настоящей работы заключалась в определении температурных зависимостей химического потенциала и оценке корреляционной энергии для твердых растворов $Pb_{1-x-y}Sn_xNa_ySe$.

Температурные зависимости химического потенциала и концентрации носителей тока

Уравнение электронейтральности для твердых растворов Pb_{1-x-v}Sn_xNa_vSe имеет вид

$$2N_{\mathrm{Sn}^{4+}} + N_{\mathrm{Sn}^{3+}} + p = N_{\mathrm{Na}},\tag{2}$$

где $N_{\text{Sn}^{3+}}$ и $N_{\text{Sn}^{4+}}$ — концентрации центров Sn^{3+} и Sn^{4+} соответственно, p — концентрация дырок в валентной зоне, N_{Na} — концентрация ионизованных одноэлектронных акцепторов (натрия).

Согласно распределению Гиббса, концентрация примесных центров с разным числом электронов определяется соотношением

$$\frac{N_s}{N_{s-1}} = \frac{g_s}{g_{s-1}} \exp\left[\frac{F - E_s}{kT}\right].$$
 (3)

Здесь N_s и N_{s-1} — концентрации центров с *s*- и (s-1)-электронами, g_s и g_{s-1} — факторы спинового вырождения для соответствующих центров, F — химический потенциал, E_s — энергия уровня, на который садится *s*-й электрон, *k* — постоянная Больцмана. Таким образом, имеем

$$\frac{N_{\rm Sn^{2+}}}{N_{\rm Sn^{3+}}} = \frac{g_{\rm Sn^{2+}}}{g_{\rm Sn^{3+}}} \exp\left[\frac{F - E_1}{kT}\right]$$
(4)

¹⁹⁵²⁵¹ Санкт-Петербург, Россия

⁷⁰²⁵⁰⁰ Ангрен, Узбекистан

[¶] E-mail: nasredinov@tuexoh.stu.neva.ru

И

$$\frac{N_{\rm Sn^{3+}}}{N_{\rm Sn^{4+}}} = \frac{g_{\rm Sn^{3+}}}{g_{\rm Sn^{4+}}} \exp\left[\frac{F - E_2}{kT}\right],\tag{5}$$

где $N_{\text{Sn}^{2+}}$ — концентрации центров Sn^{2+} , $g_{\text{Sn}^{2+}}$, $g_{\text{Sn}^{3+}}$ и $g_{\text{Sn}^{4+}}$ — факторы вырождения для центров Sn^{2+} , Sn^{3+} и Sn^{4+} соответственно (если за донорные свойства олова ответственны 5*s*-электроны, то $g_{\text{Sn}^{2+}} = 1$, $g_{\text{Sn}^{3+}} = 2$ и $g_{\text{Sn}^{4+}} = 1$).

Поскольку

$$N_{\rm Sn^{2+}} + N_{\rm Sn^{3+}} + N_{\rm Sn^{4+}} = N_{\rm Sn},\tag{6}$$

где $N_{\rm Sn}$ — общая концентрация олова, для $N_{\rm Sn^{3+}}$ и $N_{\rm Sn^{4+}}$ в (2) имеем выражения

$$N_{\mathrm{Sn}^{3+}} = N_{\mathrm{Sn}} \left\{ 1 + \frac{g_{\mathrm{Sn}^{2+}}}{g_{\mathrm{Sn}^{3+}}} \exp\left[\frac{F - E_1}{kT}\right] + \frac{g_{\mathrm{Sn}^{4+}}}{g_{\mathrm{Sn}^{3+}}} \exp\left[\frac{E_2 - F}{kT}\right] \right\}^{-1},$$

$$N_{\mathrm{Sn}^{4+}} = N_{\mathrm{Sn}} \left\{ 1 + \frac{g_{\mathrm{Sn}^{3+}}}{g_{\mathrm{Sn}^{4+}}} \exp\left[\frac{F - E_1}{kT}\right] + \frac{g_{\mathrm{Sn}^{2+}}}{g_{\mathrm{Sn}^{4+}}} \exp\left[\frac{2F - E_1 - E_2}{kT}\right] \right\}^{-1}.$$
(7)

Для концентрации дырок в валентной зоне справедливо соотношение

$$p = \int_{-\infty}^{E_v} g(E) [1 - f(E)] dE,$$
 (8)

где g(E) — плотность состояний валентной зоны, $f(E) = \frac{1}{\exp\left[\frac{E-F}{kT}\right]+1}$ — функция Ферми, E_v — энергия вершины валентной зоны.

Если $E = E_v - kT\varepsilon$ и $F = E_v - kT\mu$, то $1 - f(E) = \frac{1}{\exp(\varepsilon - \mu) + 1}$, и для модели Кейна, которая учитывает взаимодействие электронов валентной зоны и зоны проводимости, имеем

$$g(E) = \frac{4\pi}{h^3} (2m_d)^{3/2} (E_v - E)^{1/2} \\ \times \left(1 + 2\frac{E_v - E}{E_g}\right) \left(1 + \frac{E_v - E}{E_g}\right)^{1/2} \\ = \frac{4\pi}{h^3} (2m_d)^{3/2} \varepsilon^{1/2} \left(1 + 2\varepsilon \frac{kT}{E_g}\right) \left(1 + \varepsilon \frac{kT}{E_g}\right)^{1/2},$$
(9)

где E_g — ширина запрещенной зоны, $m_d = = (4)^{2/3} \sqrt[3]{m_{\perp}^2 m_{\parallel}}$ — значение эффективной массы плотности состояний у вершины валентной зоны, m_{\perp} , m_{\parallel} — поперечная и продольная эффективные массы соответственно.

Рис. 1. Табулированные значения интеграла $p = \frac{4\pi}{h^3} (2m_d kT)^{3/2} \times \int_{0}^{\infty} \varepsilon^{1/2} \left(1 + 2\varepsilon \frac{kT}{E_g}\right) \left(1 + \varepsilon \frac{kT}{E_g}\right)^{1/2} \frac{1}{\exp(\varepsilon - \mu) + 1} d\varepsilon$ для температур 100, 200, 300, 400, 500 и 600 К (кривые *I*-6 соответственно).

Температурная зависимость эффективной массы для PbSe описывается соотношением [3]

$$m_d(T) = \frac{m_d(0)}{E_g(0)} E_g(T),$$
 (10)

где $m_d = 0.11 m_e$ и $E_g = 0.165$ мэВ — значения эффективной массы и ширины запрещенной зоны при T = 0 К, а температурная зависимость E_g задается формулой [3]

$$E_g(T) = E_g(0)(1 + 4 \cdot 10^{-4} T).$$
(11)

Таким образом, для концентрации дырок в валентной зоне получаем

$$p = \frac{4\pi}{h^3} (2m_d kT)^{3/2}$$

$$\times \int_0^\infty \varepsilon^{1/2} \left(1 + 2\varepsilon \frac{kT}{E_g}\right) \left(1 + \varepsilon \frac{kT}{E_g}\right)^{1/2} \frac{1}{\exp(\varepsilon - \mu) + 1} d\varepsilon.$$
(12)

Уравнение (12) позволяет определить температурную зависимость F(T) путем сравнения экспериментально измеренной зависимости p(T) с табулированными значениями интеграла в правой части этого уравнения (см. рис. 1).

Уравнение электронейтральности (1) для дальнейшего удобно представить в виде

$$N_{\rm Na} - \rho = p, \tag{13}$$

где ρ — плотность положительного заряда на центрах олова (в единицах заряда электрона), или в развернутом

670

виде

$$N_{\mathrm{Na}} - N_{\mathrm{Sn}} = \frac{2 + \frac{s_{\mathrm{Sn}^{++}}}{g_{\mathrm{Sn}^{4+}}} \exp\left[\frac{T - E_2}{kT}\right]}{1 + \frac{g_{\mathrm{Sn}^{3+}}}{g_{\mathrm{Sn}^{4+}}} \exp\left[\frac{F - E_2}{kT}\right] + \frac{g_{\mathrm{Sn}^{2+}}}{g_{\mathrm{Sn}^{4+}}} \exp\left[\frac{2F - E_1 - E_2}{kT}\right]}$$
$$= \frac{4\pi}{h^3} (2m_d kT)^{3/2} \int_0^\infty \varepsilon^{1/2} \left(1 + 2\varepsilon \frac{kT}{E_g}\right) \left(1 + \varepsilon \frac{kT}{E_g}\right)$$
$$\times \frac{1}{\exp(\varepsilon - \mu) + 1} d\varepsilon, \tag{14}$$

0.2

причем в левой части приведен заряд на локализованных центрах, а в правой части — заряд свободных дырок в валентной зоне.

Для определения среднего значения энергии $E_0 = \frac{E_1+E_2}{2}$ и корреляционной энергии U следует вычислить степень заполнения примесных центров олова электронами

$$\xi = \frac{\rho}{eN_{\rm Sn}} = \frac{N_{\rm Na} - p}{N_{\rm Sn}},\tag{15}$$

которая может быть записана в виде

$$\xi = 2 \frac{1 + \exp\left(\frac{F - E_2}{kT}\right)}{1 + 2\exp\left(\frac{F - E_2}{kT}\right) + \exp\left(2\frac{F - E_a}{kT}\right)}$$
$$= 2 \frac{1 + \exp\left(\frac{U}{2kT}\right)\exp\left(\frac{F - E_0}{kT}\right)}{1 + 2\exp\left(\frac{U}{2kT}\right)\exp\left(\frac{F - E_0}{kT}\right) + \exp\left(2\frac{F - E_0}{kT}\right)} \quad (16)$$

или обозначениях $w = \exp\left(\frac{U}{2kT}
ight)$ и $z = \exp\left(\frac{F-E_0}{kT}
ight)$ имеем

$$\xi = 2 \frac{1 + wz}{1 + 2wz + z^2},\tag{17}$$

причем для вырожденного полупроводника $w \ll 1$.

3. Экспериментальные результаты

На рис. 2 приведены экспериментальные температурные зависимости концентрации дырок для образцов $Pb_{1-x-y}Sn_xNa_ySe$, различающихся степенью компенса-

Рис. 2. Температурные зависимости концентрации дырок для твердых растворов $Pb_{1-x-y}Sn_xNa_ySe;$ см⁻³: *I* — $N_{Sn} = 8.7 \cdot 10^{19}, N_{Na} = 5.22 \cdot 10^{19};$ *2* — $N_{Sn} = 1.74 \cdot 10^{20}, N_{Na} = 5.22 \cdot 10^{19};$ *3* — $N_{Sn} = 3.48 \cdot 10^{20}, N_{Na} = 5.22 \cdot 10^{19}.$

Физика и техника полупроводников, 2005, том 39, вып. 6

Рис. 3. Температураные зависимости химического потенциала для твердых растворов $Pb_{1-x-y}Sn_xNa_ySe: I - N_{Sn} = 8.7 \cdot 10^{19}$, $N_{Na} = 5.22 \cdot 10^{19}$; $2 - N_{Sn} = 1.74 \cdot 10^{20}$, $N_{Na} = 5.22 \cdot 10^{19}$; $3 - N_{Sn} = 3.48 \cdot 10^{20}$, $N_{Na} = 5.22 \cdot 10^{19} \text{ cm}^{-3}$.

ции двухэлектронной донорной примеси олова одноэлектронным акцептором. По табулированным значениям интеграла в правой части уравнения (12) для температур 100, 200, 300, 400, 500 и 600 К определялись зависимости F(T). На рис. 3 приведены результаты расчета. Видно, что для всех исследованных образцов химический потенциал в области температур 100–600 К находится в валентной зоне, зависимости F(T) носят линейный характер

$$F = F_0 + \alpha kT, \tag{18}$$

где $\alpha = \frac{1}{k} \frac{dF}{dT}$, причем для всех образцов экстраполяция к T = 0 К дает значение $E_v - F_0 = 210 \pm 10$ мэВ.

Для нахождения средней энергии $E_0 = \frac{E_1 + E_2}{2}$ следует выражение (16) записать в виде

$$\xi = 2 \frac{1 + \exp\left(\frac{U}{2kT}\right) \exp\left(\frac{F_0 - E_0}{kT}\right) \exp(\alpha)}{1 + 2 \exp\left(\frac{U}{2kT}\right) \exp\left(\frac{F_0 - E_0}{kT}\right) \exp(\alpha) + \exp\left(2\frac{F_0 - E_0}{kT}\right) \exp(2\alpha)}.$$
 (19)

Отсюда следует, что при $T \to 0 \text{ K } F_0 - E_0 > 0$ (химический потенциал контролируется дырками валентной зоны), если $p_0 = N_{\text{Na}}$, где p_0 — концентрация дырок при T = 0 K (для $E_V - F_0 < 210 \text{ мэВ}$ это возможно при $N_{\text{Na}} < 3 \cdot 10^{19} \text{ cm}^{-3}$, т.е. при x < 0.018) и $F_0 - E_0 < 0$ (химический потенциал контролируется заселенностью уровня олова), если $N_{\text{Na}} > 2N_{\text{Sn}} + 3 \cdot 10^{19} \text{ cm}^{-3}$. При промежуточных концентрациях натрия $F_0 = E_0$.

Исходя из состава исследованных образцов следует заключить, что во всех случаях справедливо соотношение $F_0 = E_0$, причем

$$\xi = 2 \frac{1 + \exp\left(\frac{U}{2kT}\right) \exp(\alpha)}{1 + 2 \exp\left(\frac{U}{2kT}\right) \exp(\alpha) + \exp(2\alpha)}.$$
 (20)

Корреляционная энергия U может быть определена из последнего выражения

$$U = 2kT \ln\left[\frac{\exp(\alpha)}{2}\frac{\xi}{1-\xi} - \frac{\exp(\alpha)}{2}\left(2 + \frac{\xi}{1-\xi}\right)\right] \quad (21)$$

с использованием экспериментальных величин α и ξ . Процедура определения U проводилась для температуры 100 К (поскольку при более высоких температурах необходимо учитывать температурную зависимость E_0), и при этом получено $U = -70 \pm 10$ мэВ.

Отметим, что при исследовании методом мессбауэровской спектроскопии процесса электронного обмена между нейтральными и ионизованными центрами олова в PbSe в интервале температур100–400 К была получена величина $U = 60 \pm 20$ мэВ [2], что находится в хорошем согласии с полученным нами значением U.

4. Заключение

Исходя из распределения Гиббса получены соотношения, позволяющие для селенида свинца с двухэлектронными центрами олова на основе экспериментальной температурной зависимости концентрации носителей тока определить корреляционную энергию и температурную зависимость химического потенциала. Для всех исследованных твердых растворов Pb_{1-x-y}Sn_xNa_ySe химический потенциал в области температур 100–600 К находится в валентной зоне, зависимости F(T) носят линейный характер и экстраполяция к T = 0 К дает значение $E_v - F_0 = 210 \pm 10$ мэВ. Величина корреляционной энергии для центров олова оказалась равной $U = -70 \pm 20$ мэВ, что находится в хорошем согласии с данными мессбауэровской спектроскопии.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 02-02-17306).

Список литературы

- [1] Г.Т. Алексеева, Е.А. Гуриева, П.П. Константинов, Н.В. Максимова, Л.В. Прокофьева. ФТП, **29**, 1388 (1995).
- [2] Ф.С. Насрединов, С.А. Немов, В.Ф. Мастеров, П.П. Серегин. ФТТ, 41, 1897 (1999).
- [3] С.А. Немов, Ю.И. Равич. УФН, 168, 817 (1998).

Редактор Л.В. Беляков

Energy parameters of the two-electron tin centers in PbSe

S.A. Nemov, F.S. Nasredinov, P.P. Seregin, N.P. Seregin*, E.S. Khuzhakulov⁺

St. Petersburg, State Polytechnical University, 195251 St. Petersburg, Russia * Institute of Analytical Devices, Russian Academy of Sciences, 198103 St. Petersburg, Russia + Tashkent Regional State Pedagogical Institute, 702500 Angren, Usbekistan

Abstract Relations providing determination of the Hubbard energy U and the temperature dependence of the Fermi level F for the two-electron tin centers in lead selenide on the basis of the measured carrier concentration temperature dependencies have been established. For the $Pb_{1-x-y}Sn_xNa_ySe$ solid solutions the Fermi level has been found within the valence band at temperatures 100 to 600 K. The F(T) dependencies have been linear with the T = 0 extrapolated value $E_v - F = 210 \pm 10$ meV. The Hubbard energy value $U = 70 \pm 10$ meV has been obtained for the two-electron tin centers in PbSe.