Исследования медь-углеродных систем методом ЭПР

© Б.П. Попов¶

Санкт-Петербургский государственный политехнический университет, 195251 Санкт-Петербург, Россия

(Получена 29 июля 2004 г. Принята к печати 30 июля 2004 г.)

Рассмотрены результаты исследований методом электронного парамагнитного резонанса состояний меди, интеркалированной в различные углеродные матрицы: фуллереновую (C₆₀), матрицу ультрадисперсного алмаза и аморфного углерода. Показана возможность реакции диспропорционирования меди по схеме: $2Cu^{2+} \rightarrow Cu^+ + Cu^{3+}$. Обнаружено суперпарамагнитное состояние в системе медь — ультрадисперсный алмаз — в интервале температур 10–130 К.

1. Введение

Атомная структура всех молекулярных форм углерода обладает уникальной способностью образовывать различные типа гибридизации валентных орбиталей. Это позволяет использовать углеродные системы как матрицы для интеркалирования металлов и металлических кластеров. При этом существенным оказывается вопрос о характере взаимодействия данного металла с углеродной матрицей. Исследовалась серия образцов, полученных как описано в работах [1-3]. Измерения микроволнового поглощения, эффекта Мейснера, а также температурного хода сопротивления показали наличие в образцах Cu-C₆₀ явления сверхпроводимости с высокой критической температурой $T_c = 120 \,\mathrm{K}$ [1]. Природа данного явления связана с образованием в образцах макромолекулярных кластеров фуллеренов, в которые встроена медь через кислородные мостики [3]. В предположении, что медь в такой системе является донором электронов, возможна реализация в процессе легирования реакции диспропорционирования меди по схеме: $2Cu^{2+} \rightarrow Cu^{+} + Cu^{3+}$ [4]. При этом механизм формирования сверхпроводящего состояния связан с существованием центров с отрицательной эффективной корреляционной энергией (U⁻-центров). Для изучения зарядовых состояний меди были проведены исследования методом электронного парамагнитного резонанса (ЭПР) состояний меди, интеркалированной в различные углеродные матрицы: фуллереновую (С₆₀), ультрадисперсного алмаза (УДА) и аморфного углерода (α-С:Н). Измерения проводились на стандартном спектрометре ЭПР "RADIOPAN" на частоте 9.6 ГГц в температурном интервале 4-300 К.

2. Результаты исследований ЭПР

Спектр ЭПР образцов Cu–C₆₀ (рис. 1, *a*) состоял из четырех линий разрешенной сверхтонкой структуры меди в зарядовом состоянии Cu²⁺ с *g*-фактором, равным 1.99, и узкой линии от углеродных радикалов с g = 2.003. Наблюдался спектр ЭПР поликристаллических (ПК) образцов, затем они измельчались до микронных размеров и измерялся спектр ЭПР порошков (П). Параметры спектров ЭПР (значение *g*-фактора, ширина линии) от образцов ПК и П значительных изменений не претерпевали. Примерно на порядок увеличивалась интенсивность сигнала ЭПР меди в П образцах, что позволяет сделать вывод о том, что в ПК образцах медь находится как в магнитном состоянии — $3d^9$, так и в одном из немагнитных состояний — $3d^8$ или $3d^{10}$. Кроме того, в ПК образцах наблюдалось отклонение от закона Кюри в температурной зависимости интенсивности сигнала ЭПР меди. Для определения концентрации парамагнитных центров одновременно с сигналом ЭПР исследуемых образцов записывался сигнал от эталона фирмы "Radiopan", который имеет концентрацию спинов $5 \cdot 10^{17}$ см⁻³. Вычисление спиновой концентрации проводилось сравнением с этим эталоном.

Спектры ЭПР образцов Си–УДА при различных температурах приведены на рис. 1, *b*. Наблюдался спектр ЭПР меди в состоянии $3d^9$ (Cu²⁺) с *g*-фактором, равным 2.08, и шириной линии $\Delta H_{pp} = 400$ Э и узкая линия от углеродных радикалов с *g* = 2.003. Характерный спектр ЭПР образцов Си– α -С:Н приведен на рис. 1, *c*. Из рисунка видно, что спектр ЭПР представляет собой суперпозицию широкой и узкой линий. Узкая линия характеризуется параметрами: *g* = 2.003 и $\Delta H = 11$ Э и является хорошо известным спектром ЭПР углеродных радикалов. Широкую компоненту спектра следует рассматривать как результат наложения двух спектров от аксиально-искаженных центров меди. Параметры спектров ЭПР меди приведены в таблице.

В спектрах ЭПР меди в УДА и аморфном углероде сверхтонкая структура не наблюдалась. Константа сверхтонкой структуры (СТС) оценивалась по величине дипольного уширения отдельного перехода: $\Delta H_{pp} \approx g\beta S/r^3 \approx g\beta Sn_{\rm Cu}$, где g — значение g-фактора Cu, β — магнетрон Бора, S = 1/2 — спин иона Cu²⁺,

Параметры спектров ЭПР

Образец	<i>g-</i> фактор	Δ <i>H</i> _{pp} , Э	$A_{\rm hpf}, \ 10^{-4} {\rm cm}^{-1}$	<i>n</i> _{Cu} , см ⁻³ (по спинам)
ПК Си-С ₆₀	1.99	420	131	10 ¹⁷
П Си–С ₆₀	1.99	420	131	10^{18}
Си–УДА	2.08	300	93	1019
$Cu-\alpha-C:H$	$g_{\parallel} = 2.36, g_{\perp} = 1.99$	300	93	10 ¹⁹
	$g_{\parallel} = 2.71, g_{\perp} = 1.99$			

[¶] E-mail: popov@tuexph.stu.neva.ru

Рис. 1. Спектры ЭПР образцов Си– C_{60} (*a*), Си–УДА (*b*) и Си– α -С: H (*c*).

 $n_{\rm Cu}$ — концентрация ионов Cu. При экспериментальном значении ширины линии ЭПР ионов меди $\Delta H_{pp} = 100$ Э, локальная концентрация ионов Cu⁺² в этих образцах составила $n_{\rm Cu} \approx 10^{19}$ см⁻³.

3. Обсуждение результатов

Особый интерес вызывает наличие разрешенной сверхтонкой структуры и величина константы СТС меди в фуллереновых матрицах — $A_{hpf} = 131 \cdot 10^{-4} \text{ см}^{-1}$. Известно [5], что сверхтонкое расщепление изменяется в зависимости от ковалентности связи: чем сильнее ионность связи в кристалле, тем больше расщепление. В случае ковалентной связи электроны переходят на 4s-оболочку Cu, что приводит к уменьшению вклада конфигурационного взаимодействия в константу СТС внутри конфигурации $3s^2 3d^9$. Таким образом, медь, интеркалированная в фуллереновую матрицу, находится в переходной области от ионной связи (область Cu²⁺) к ковалентной (область $Cu^+ + Cu^{3+}$), что и обеспечивает реакцию диспропорционирования. Необходимо отметить одно важное обстоятельство, связанное с перераспределением электронной плотности при возрастании ковалентности связи. Если связь Cu-O имеет ионный характер, то ионы Cu²⁺ ведут себя как локализованные 3d⁹-ионы. Однако когда расстояние Си-О уменьшается, ковалентность возрастает, при этом увеличивается перекрытие волновых функций меди с орбиталями кислорода, и в концентрированной системе электронные уровни расширяются, превращаясь в примесные зоны. Когда система находится в пределах ионной связи, цепочки Си-О-Си линейны. С уменьшением длины связи, при переходе в ковалентную связь, изменяется характер *s*-*p*-гибридизации, что приводит к смещению электронной плотности от линии связи. В области, соответствующей диспропорционированию, связь Си-О-Си становится зигзагообразной. Наличие вакансий кислорода понижает координационное число катионов меди. Можно полагать [4], что в системе медь-фуллерен существует переходная область переменной валентности меди, в которой будет наблюдаться сверхпроводимость.

Исследование микроволнового поглощения (МВП) образцов УДА, интеркалированных медью, показало отсутствие сигнала МВП, характерного для сверхпроводящих образцов. Наблюдалась линейная зависимость поглощаемой мощности от величины магнитного поля [2]. В спектрах ЭПР образцов Си-УДА, кроме линий, обусловленных ионами Cu²⁺ и углеродными радикалами, наблюдалась широкая линия с g = 5.28. Эта линия, очевидно, обусловлена взаимодействующими парамагнитными центрами (однодоменными магнитными кластерами) неизвестной природы, но скорее всего содержащими медь. При понижении температуры широкая линия уширяется и затем исчезает, а проявление ее g-фактора сдвигается в область слабых полей. При T < 130 K эта линия исчезает полностью. В области слабых магнитных полей ($H = 40 \Theta$) в зависимости dP/dH от величины магнитного поля наблюдается наклон, обусловленный нелинейностью зависимости намагниченности M(H). По температурной зависимости этого наклона (рис. 2) были определены температура и ширина магнитного фазового перехода: $T_{1c} = 130 \text{ K}$ и $\Delta T = 30 \text{ K}$.

Рис. 2. Температурные зависимости интенсивности сигнала ЭПР в слабом магнитном поле для образцов Си–УДА, отожкенных при температуре *T*_{ann}, K: *1* — 700, *2* — 800, *3* — 900.

Физика и техника полупроводников, 2005, том 39, вып. 4

Рис. 3. Кривые намагниченности, измеренные на СКВИДмагнитометре. Сплошная (1) и штриховая (2) кривые разные образцы. Температура измерений T = 4.3 K.

H, kOe

Спектры ионов Cu+2 и углеродных радикалов не обнаруживали драматических изменений до 10 К, что свидетельствует о неизменности системы С-Си. Однако при понижении температуры до $T_{2c} = 8 - 10 \,\mathrm{K}$ происходило резкое увеличение ширины линии ЭПР ионов Cu⁺², так что она практически переставала наблюдаться. Это может быть связано как с магнитным упорядочением меди, не вошедшей в магнитные кластеры [6], так и с магнитным взаимодействием между нанокластерами [7]. Подобные изменения в спектре ЭПР аналогичны поведению суперпарамагнитных (СП) областей. В этом случае ансамбль макромолекулярных кластеров при температурах выше Т_{2с} ведет себя подобно газу парамагнитных молекул с большим магнитным моментом, а при $T < T_{2c}$ система переходит в состояние кооперативного магнитного упорядочения. Подтверждением данного предположения являются измерения образцов Си-УДА, выполненные на СКВИД-магнитометре в интервале температур 4-10 К. Кривая намагничивания *М*(*H*) имеет характерный для ферромагнетиков вид петли гистерезиса (рис. 3), что свидетельствует о наличии магнитного порядка в этом температурном диапазоне. Определенная по петле гистерезиса коэрцитивная сила образцов Си–УДА составила величину: $H_r = 40$ Э. Таким образом, в системе С-Си, приготовленной на основе УДА с медью, наблюдаются два фазовых магнитных перехода при $T_{1c} = 130$ К и $T_{2c} = 10$ К.

Исследования меди в пленках гидрогенизированного аморфного углерода указывают на образование по крайней мере двух типов центров, которые обусловлены различными зарядовыми и соответственно магнитными состояниями меди: немагнитное состояние меди в конфигурации $3d^{10}$ (Cu⁺) и магнитное состояние $3d^9$ (Cu²⁺). Ион меди встраивается в углеродную матрицу с помощью мостиков кислорода, образуя магнитное состояние Cu^{2+} . Влияние водорода на зарядовое состояние меди проявляется как результат его взаимодействия с атомами кислорода с образованием гидроксильных групп. В этом случае ионы меди переходят в немагнитную конфигурацию $3d^{10}$ (зарядовое состояние Cu^+). Следы гидроксильных групп наблюдались в спектрах ИК поглощения [3]. Модель образования двух зарядовых состояний меди (Cu^+ и Cu^{2+}) в матрице амофрного углерода приведена в работах [3,8].

4. Заключение

Результаты исследований ЭПР показывают, что медь, интеркалированная в углеродные матрицы, образует два типа центров, отличающихся магнитным и зарядовым состояниями и обладающих электронными конфигурациями $3d^9$ (магнитное состояние) и $3d^{10}$ (немагнитное состояние). Модификация состояний меди происходит с непосредственным участием кислорода, через который она встраивается в углеродную матрицу. Большая величина константы СТС меди $(A_{hpf} = 131 \cdot 10^{-4} \text{ см}^{-1})$ указывает на то, что связь Cu-O находится в промежуточной области перехода от ионной связи (Cu²⁺) к ковалентной (Cu⁺ + Cu³⁺), следовательно, возможна реакция диспропорционирования меди по схеме $2Cu^{+2} \rightarrow Cu^{+} + Cu^{+3}$. Результаты данной работы дают повод для дальнейшего более глубокого исследования физического состояния медь-углеродных систем.

Список литературы

- В.Ф. Мастеров, О.И. Коньков, А.В. Приходько, Е.И. Теруков, Б.П. Попов, С.Г. Ястребов. Письма ЖТФ, 20, 614 (1994).
- [2] V.F. Masterov, B.P. Popov, A.Ya. Aleksenskiy, E.I. Terukov, A.Ya. Vul. Proc. Int. Worshop. "Fullerences and Atomic clusters" IWFAC'-97 (St. Petersburg, Russia, 1995) p. 127.
- [3] Т.К. Звонарева, В.И. Иванов-Омский, Б.П. Попов, К.Ф. Штельмах. Письма ЖТФ, 26, 56 (2000).
- [4] K.D. Tsendin, B.P. Popov. Supercond. Sci. Technol., 12, 255 (1999).
- [5] А. Абрагам, Б. Блини. Электронный парамагнитный резонанс переходных ионов (М., Мир, 1972).
- [6] И.Я. Коренблит, Е.Ф. Шендер. УФН, **126**, 233 (1978).
- [7] P. Allia, M. Coisson, P. Tiberto. Phys. Rev. B, 64, 14420 (2001).
- [8] В.И. Иванов-Омский, Э.А. Сморгонская. ФТП, 32, 931 (1998).

Редактор Т.А. Полянская

Investigation by method of EPR of cuprum-carbon systems

B.P. Popov

St. Petersburg Polytechnical University, 195251 St. Petersburg, Russia