Статистика электронов в PbS с U-центрами

© С.А. Немов, Ф.С. Насрединов, П.П. Серегин, Н.П. Серегин, Э.С. Хужакулов*

Санкт-Петербургский государственный политехнический университет,

195251 Санкт-Петербург, Россия

* Ташкентский областной государственный педагогический институт,

702500 Ангрен, Узбекистан

(Получена 14 мая 2004 г. Принята к печати 24 мая 2004 г.)

С использованием распределения Гиббса получена зависимость концентрации промежуточного зарядового состояния Sn^{3+} двухэлектронных центров олова в PbS от корреляционной энергии. Показано, что такое состояние олова не может быть обнаружено с помощью мессбауэровской спектроскопии на изотопе ¹¹⁹Sn (из-за недостаточной чувствительности), однако оно может проявиться в температурной зависимости концентрации дырок в твердых растворах $\mathrm{Pb}_{1-x-y} \mathrm{Sn}_x \mathrm{Na}_y \mathrm{S}$).

1. Введение

Олово в сульфиде свинца (PbS) является изоэлектронной примесью замещения и, тем не менее, согласно данным по явлениям переноса [1] и данным мессбауэровской спектроскопии на изотопе ¹¹⁹Sn, при малых концентрациях действует как донор [2]: для образцов $Pb_{1-x}Sn_xS$ с электронной проводимостью, содержащих сверхстехиометрический свинец, в мессбауэровских спектрах наблюдалось только двухвалентное олово Sn²⁺, тогда как для образцов $Pb_{1-x-y}Sn_xA_yS$ с дырочной проводимостью (здесь А — одноэлектронный акцептор, например натрий или таллий, $y \ge 2x$) только четырехвалентное олово Sn⁴⁺. Мессбауэровские спектры были объяснены в предположении, что примесные атомы олова замещают двухвалентный свинец в кубической решетке PbS и образуют в запрещенной зоне донорные состояния: линия двухвалентного олова Sn²⁺ отвечает нейтральным относительно катионной подрешетки состояниям ([Sn]⁰), а линия четырехвалентного олова Sn⁴⁺ — двукратно ионизованным состояниям ([Sn]²⁺) донорного центра олова в PbS. Меняя соотношение концентраций олова и акцепторной примеси в PbS, можно получить любое контролируемое соотношение интенсивностей линий Sn²⁺ и Sn^{4+} [1]. Отсутствие линии Sn^{3+} (однократно ионизованного донорного центра олова) в мессбауэровских спектрах, измеренных при температуре $T = 80 \, {\rm K}$ на частично компенсированных образцах $Pb_{1-x-y}Sn_xA_yS$, указывает на то, что олово образует в PbS двухэлектронные донорные центры с отрицательной корреляционной энергией, т.е. энергия однократной ионизации этих центров больше, чем половина энергии его двукратной ионизации. Наконец, дырочный характер проводимости и отсутствие вырождения для частично компенсированных образцов $Pb_{1-x-y}Sn_xA_yS$ указывает на то, что химический потенциал находится в нижней половине запрещенной зоны полупроводника (следовательно, донорные уровни олова в сульфиде свинца также размещены в нижней половине запрещенной зоны).

Таким образом, в запрещенной зоне полупроводника образуется две полосы локализованных состояний олова,

разделенных на величину корреляционной энергии

$$U = E_1 - E_2, \tag{1}$$

где E_1 — энергия уровня, на который садится электрон, превращая центр Sn^{3+} в центр Sn^{2+} , E_2 — энергия уровня, на который садится электрон, превращая центр Sn^{4+} в центр Sn^{3+} . Плотность состояний как функция энергии в запрещенной зоне $\mathrm{Pb}_{1-x-y}\mathrm{Sn}_x\mathrm{A}_y\mathrm{S}$ была предложена авторами [2]. Цель настоящей работы состояла в установлении температурных зависимостей химического потенциала и концентрации носителей тока.

Температурные зависимости химического потенциала и концентрации носителей тока

Согласно распределению Гиббса, концентрация примесных центров с разным числом электронов определяется соотношением

$$\frac{N_s}{N_{s-1}} = \frac{g_s}{g_{s-1}} \exp \frac{F - E_s}{kT}.$$
 (2)

Здесь N_s и N_{s-1} — концентрации центров с s и (s-1) электронами, g_s и g_{s-1} — факторы спинового вырождения для соответствующих уровней, F — уровень химического потенциала, E_s — энергия уровня, на который садится s-й электрон, k — постоянная Больцмана.

Таким образом, для твердых растворов $Pb_{1-x-y}Sn_xA_yS$ имеем

$$\frac{N_{\mathrm{Sn}^{2+}}}{N_{\mathrm{Sn}^{3+}}} = \frac{g_{\mathrm{Sn}^{2+}}}{g_{\mathrm{Sn}^{3+}}} \exp \frac{F - E_1}{kT}$$
(3)

И

$$\frac{N_{\mathrm{Sn}^{3+}}}{N_{\mathrm{Sn}^{4+}}} = \frac{g_{\mathrm{Sn}^{3+}}}{g_{\mathrm{Sn}^{4+}}} \exp \frac{F - E_2}{kT},\tag{4}$$

где $N_{\text{Sn}^{2+}}$, $N_{\text{Sn}^{3+}}$ и $N_{\text{Sn}^{4+}}$ — концентрации центров Sn^{2+} , Sn^{3+} и Sn^{4+} соответственно, $g_{\text{Sn}^{2+}}$, $g_{\text{Sn}^{3+}}$ и $g_{\text{Sn}^{4+}}$ — факторы вырождения для центров Sn^{2+} , Sn^{3+} и Sn^{4+} соответственно (считая, что за донорные свойства олова ответственны 5s-электроны, получим: $g_{\text{Sn}^{2+}} = 1$, $g_{\text{Sn}^{3+}} = 2$ и $g_{\text{Sn}^{4+}} = 1$).

Рис. 1. Зависимости относительных концентраций $\operatorname{Sn}^{2+}(a)$, $\operatorname{Sn}^{3+}(b)$ и $\operatorname{Sn}^{4+}(c)$ от положения химического потенциала в твердых растворах $\operatorname{Pb}_{1-x-y}\operatorname{Sn}_x\operatorname{A}_y\operatorname{S}$ для случая U < 0. На вставке — область малых концентраций Sn^{3+} .

Рис. 2. Зависимость максимальной относительной концентрации Sn^{3+} в твердых растворах $\operatorname{Pb}_{1-x-y}\operatorname{Sn}_x\operatorname{A}_y\operatorname{S}$ при 80 K от корреляционной энергии.

Поскольку

$$N_{\mathrm{Sn}^{2+}} + N_{\mathrm{Sn}^{3+}} + N_{\mathrm{Sn}^{4+}} = N_{\mathrm{Sn}},\tag{5}$$

где N_{Sn} — общая концентрация олова, то

$$N_{\mathrm{Sn}^{2+}} = N_{\mathrm{Sn}} \left[1 + \frac{g_{\mathrm{Sn}^{3+}}}{g_{\mathrm{Sn}^{2+}}} \exp \frac{E_1 - F}{kT} + \frac{g_{\mathrm{Sn}^{4+}}}{g_{\mathrm{Sn}^{2+}}} \exp \frac{E_1 + E_2 - 2F}{kT} \right]^{-1},$$

$$N_{\mathrm{Sn}^{3+}} = N_{\mathrm{Sn}} \left[1 + \frac{g_{\mathrm{Sn}^{2+}}}{g_{\mathrm{Sn}^{2+}}} \exp \frac{F - E_1}{kT} + \frac{g_{\mathrm{Sn}^{4+}}}{g_{\mathrm{Sn}^{3+}}} \exp \frac{E_2 - F}{kT} \right]^{-1},$$

$$N_{\mathrm{Sn}^{4+}} = N_{\mathrm{Sn}} \left[1 + \frac{g_{\mathrm{Sn}^{3+}}}{g_{\mathrm{Sn}^{4+}}} \exp \frac{F - E_1}{kT} + \frac{g_{\mathrm{Sn}^{4+}}}{g_{\mathrm{Sn}^{4+}}} \exp \frac{F - E_1}{kT} + \frac{g_{\mathrm{Sn}^{4+}}}{g_{\mathrm{Sn}^{4+}}} \exp \frac{F - E_1}{kT} \right]^{-1}.$$

$$(6)$$

Зависимости $N_{\text{Sn}^{2+}}$, $N_{\text{Sn}^{3+}}$ и $N_{\text{Sn}^{4+}}$ от F для U < 0 представлены на рис. 1 (в согласии с данными

авторов [3] использованы величины: |U| = 0.06 эВ, $E_1 = 0.04$ эВ, $E_2 = 0.10$ эВ, энергия отсчитывается от вершины валентной зоны). Максимальная концентрация Sn³⁺ (с точностью до $kT \ln(g_{\text{Sn}^{3+}}/g_{\text{Sn}^{4+}}))$ достигается при $F = (E_1 + E_2)/2$, и она определяется как

$$[N_{\rm Sn^{3+}}]_{\rm max} = N_{\rm Sn} \left[1 + 2 \, \frac{\sqrt{g_{\rm Sn^{2+}} g_{\rm Sn^{4+}}}}{g_{\rm Sn^{3+}}} \exp\left(-\frac{U}{kT}\right) \right]^{-1}.$$
 (7)

Зависимость $[N_{\text{Sn}^{3+}}]_{\text{max}}$ от корреляционной энергии для температуры 80 К приведена на рис. 2. Видно, что при выполнении условия |U| > 0.06 эВ (экспериментальные данные авторов [3]) для случая отрицательной корреляционной энергии $[N_{\text{Sn}^{3+}}]_{\text{max}} \ll N_{\text{Sn}}$, и этим объясняются трудности наблюдения центров Sn^{3+} в мессбауэровских спектрах ¹¹⁹Sn.

Плотность положительного заряда на центрах олова (в единицах заряда электрона) есть

$$o = 2N_{\mathrm{Sn}^{4+}} + N_{\mathrm{Sn}^{3+}}$$

= $N_{\mathrm{Sn}} \frac{2 + (g_{\mathrm{Sn}^{3+}}/g_{\mathrm{Sn}^{4+}}) \exp[(F - E_2)/kT]}{1 + \frac{g_{\mathrm{Sn}^{3+}}}{g_{\mathrm{Sn}^{4+}}} \exp \frac{F - E_2}{kT} + \frac{g_{\mathrm{Sn}^{2+}}}{g_{\mathrm{Sn}^{4+}}} \exp \frac{2F - E_1 - E_2}{kT}},$ (8)

и отсюда следует, что для случая U < 0 заряд на центрах Sn^{3+} необходимо учитывать только при $F \ge E_2$. При $F = E_2$

$$\rho = N_{\rm Sn} \, \frac{4}{3 + \exp(-U/kT)}$$

и при $F = (E_1 + E_2)/2$ имеем $\rho = N_{\text{Sn}}$.

Уравнение электронейтральности для твердых растворов Pb_{1-x-v}Sn_xA_vS в общем случае имеет вид

$$2N_{\mathrm{Sn}^{4+}} + N_{\mathrm{Sn}^{3+}} + p = N_{\mathrm{A}},\tag{9}$$

где p — концентрация дырок, а N_A — концентрация одноэлектронных акцепторов. Для области примесной проводимости $p \ll N_{\text{Sn}}$, N_A и уравнение электронейтральности в развернутом виде может быть записано как

$$N_{\rm Sn} \frac{2 + (g_{\rm Sn^{3+}}/g_{\rm Sn^{4+}}) \exp[(F - E_2)/kT]}{1 + \frac{g_{\rm Sn^{3+}}}{g_{\rm Sn^{4+}}} \exp\frac{F - E_2}{kT} + \frac{g_{\rm Sn^{2+}}}{g_{\rm Sn^{4+}}} \exp\frac{2F - E_1 - E_2}{kT}}{kT} = N_{\rm A}.$$
(10)

Если ввести обозначения

$$x = F - \frac{E_1 + E_2}{2}$$
 $x^2 = \exp{\frac{2F - E_1 - E_2}{kT}} = \exp{\frac{2x}{kT}},$

уравнение (10) сводится к квадратному уравнению относительно *z*:

$$\frac{g_{\mathrm{Sn}^{2+}}}{g_{\mathrm{Sn}^{4+}}}z^2 + \frac{g_{\mathrm{Sn}^{3+}}}{g_{\mathrm{Sn}^{4+}}}\exp\frac{U}{kT}\cdot\left(1-\frac{N_{\mathrm{Sn}}}{N_{\mathrm{A}}}\right)z + \left(1-\frac{2N_{\mathrm{Sn}}}{N_{\mathrm{A}}}\right) = 0.$$
(11)

Решив это уравнение, можно определить температурную зависимость химического потенциала F. Мы ограничимся рассмотрением случая U < 0 для двух областей в зависимости F(T), принципиально различающихся соотношением между $N_{\text{Sn}^{3+}}$ и $N_{\text{Sn}^{4+}}$.

Физика и техника полупроводников, 2005, том 39, вып. 3

Область I: $N_{\mathrm{Sn}^{3+}} \gg N_{\mathrm{Sn}^{4+}}$, или $p \approx N_{\mathrm{Sn}^{3+}} = N_{\mathrm{A}}$. Этот случай реализуется при $F - E_2 \gg kT$

(т. е. $\exp(F - E_2)/kT \gg 1$), когда имеет место малая степень компенсации олова акцепторной примесью (т. е. $N_{\text{Sn}} \gg N_{\text{A}}$), так что тем более выполняется условие $F - (E_1 + E_2)/2 \gg kT$ (т. е. $\exp[(2F - E_1 - E_2)/kT] \gg \exp[(F - E_2)/kT] \gg 1$).

Тогда уравнение (11) сводится к уравнению

$$z = \frac{N_{\mathrm{Sn}}g_{\mathrm{Sn}^{3+}}}{N_{\mathrm{A}}g_{\mathrm{Sn}^{2+}}} \exp \frac{U}{kT}$$
(12)

и температурная зависимость химического потенциала имеет вид

$$F = E_1 + kT \ln \left[\frac{N_{\text{Sn}}}{N_{\text{A}}} \frac{g_{\text{Sn}^{3+}}}{g_{\text{Sn}^{2+}}} \right].$$
 (13)

При $\rho \ll N_{\text{Sn}}$ и $F > (E_1 + E_2)/2$ имеем $[dF/dT]_{\rho=\text{const}} > 0$. Таким образом, если $F > E_2$, то уровень химического потенциала поднимается с ростом температуры при $\rho = \text{const.}$

При выполнении условия (13) температурная зависимость концентрации дырок имеет вид

$$p = N_V \exp\left[\frac{E_V - F}{kT}\right] = N_V \frac{N_A}{N_{\text{Sn}}} \frac{g_{\text{Sn}^{2+}}}{g_{\text{Sn}^{3+}}} \exp\left[\frac{E_V - E_1}{kT}\right],$$
(14)

где N_V — эффективная плотность состояний вблизи вершины валентной зоны, при вычислении которой следует учитывать поправку Кейна на непараболичность валентной зоны PbS; E_V — энергия вершины валентной зоны.

Область II: $N_{\mathrm{Sn}^{3+}} \ll N_{\mathrm{Sn}^{4+}}$, или $p = 2N_{\mathrm{Sn}^{4+}} = N_{\mathrm{A}}$.

Этот случай реализуется при $F < E_2$, когда имеет место большая степень компенсации олова акцепторной примесью, причем выполняется либо условие $2N_{\rm Sn} - N_{\rm A} \ll N_{\rm A}$, но при этом $2N_{\rm Sn} - N_{\rm A} > 0$ (т. е. $0 < 2N_{\rm Sn} - N_{\rm A} \ll N_{\rm A}$), либо условие $\exp(U/kT) \ll 1$ (т. е. $|U| \gg kT$) — иными словами, в области низких температур.

Тогда уравнение (11) сводится к уравнению

$$N_{\rm Sn} \frac{2}{(g_{\rm Sn^{2+}}/g_{\rm Sn^{4+}}) \exp[(2F - E_1 - E_2)/kT] + 1} = N_{\rm A}, \ (15)$$

так что температурная зависимость химического потенциала имеет вид

$$F = \frac{E_1 + E_2}{2} + kT \ln\left(\frac{g_{\mathrm{Sn}^{4+}}}{g_{\mathrm{Sn}^{2+}}} \frac{2N_{\mathrm{Sn}} - N_{\mathrm{A}}}{N_{\mathrm{A}}}\right), \qquad (16)$$

и поскольку $2N_{
m Sn} - N_{
m A} \ll N_{
m A}$, то

$$\ln\left(\frac{g_{\mathrm{Sn}^{4+}}}{g_{\mathrm{Sn}^{2+}}}\frac{2N_{\mathrm{Sn}}-N_{\mathrm{A}}}{N_{\mathrm{A}}}\right) < 0$$

что соответствует $[dF/dT]_{
ho={\rm const}} < 0,$ когда $F < (E_1 + E_2)/2.$

При выполнении условия (16) температурная зависимость концентрации дырок имеет вид

$$p = N_V \exp \frac{E_V - F}{kT}$$
$$= N_V \sqrt{\frac{g_{\text{Sn}^{4+}}}{g_{\text{Sn}^{2+}}}} \frac{2N_{\text{Sn}} - N_A}{N_A}}{N_A} \exp \frac{E_V - (E_1 + E_2)/2}{kT}.$$
 (17)

3. Экспериментальные результаты

Сравнивая уравнения (14) и (17), можно сделать вывод, что энергия активации, определяемая из температурной зависимости концентрации дырок, в образцах Pb_{1-x-v}Sn_xA_vS должна зависеть от соотношения концентраций олова и акцепторной примеси. В качестве примера на рис. З приведены температурные зависимости концентрации дырок для твердых растворов Pb_{0.94}Sn_{0.05}Na_{0.01}S и Pb_{0.985}Sn_{0.005}Na_{0.01}S. Для Pb_{0.94}Sn_{0.05}Na_{0.01}S получены значения энергии активации для примесной проводимости (T < 450 K) $E_{01} = (0.080 \pm 0.002)$ эВ и для собственной проводимости (T > 450 K) $E_{02} = (0.217 \pm 0.002)$ эВ. Для Рb0.985Sn0.005Na0.01S получены значения энергии активации для примесной проводимости (*T* < 500 K) $E_{01} = (0.099 \pm 0.002)$ эВ и для собственной проводимости $(T > 500 \text{ K}) E_{02} = (0.211 \pm 0.002)$ эВ.

Таким образом, для образцов $Pb_{0.94}Sn_{0.05}Na_{0.01}S$ и $Pb_{0.985}Sn_{0.005}Na_{0.01}S$ энергии активации в области примесной проводимости различаются на величину ~ 0.02 эВ, что соответствует U = 0.04 эВ и согласуется с данными по определению величины U из измерений методом мессбауэровской спектроскопии частоты электронного обмена между нейтральными и ионизованными центрами олова в твердых растворах $Pb_{1-x-y}Sn_xA_yS$ [3].

Рис. 3. Температурные зависимости концентрации дырок для образцов $Pb_{0.94}Sn_{0.05}Na_{0.01}S(a)$ и $Pb_{0.985}Sn_{0.005}Na_{0.01}S(b)$.

Физика и техника полупроводников, 2005, том 39, вып. 3

4. Заключение

Получена зависимость концентрации промежуточного зарядового состояния Sn^{3+} двухэлектронных центров олова в PbS от корреляционной энергии и показано, что это состояние олова не может быть обнаружено с помощью мессбауэровской спектроскопии на изотопе ¹¹⁹Sn из-за недостаточной чувствительности. Однако состояние Sn^{3+} , по-видимому, проявляется в температурной зависимости концентрации дырок в твердых растворах $\mathrm{Pb}_{1-x-y}\mathrm{Sn}_x\mathrm{A}_y\mathrm{S}$.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 02-02-17306).

Список литературы

- Л.В. Прокофьева, М.Н. Виноградова, С.В. Зарубо. ФТП, 14, 2201 (1980).
- [2] Ф.С. Насрединов, С.А. Немов, В.Ф. Мастеров, П.П. Серегин. ФТТ, **41**, 1897 (1999).
- [3] В.Ф. Мастеров, Ф.С. Насрединов, С.А. Немов, П.П. Серегин. ФТП, **31**, 291 (1997).

Редактор Л.В. Шаронова

Statistics of electrons in PbS with *U*-centres

S.A. Nemov, F.S. Nasredinov, P.P. Seregin, N.P. Seregin, E.S. Khuzhakulov*

St. Petersburg State Politechnical University, 195251 St. Petersburg, Russia * Tashkent Regional State Pedagogical Institute, 702500 Angren, Uzbekistan