Сенсоры аммиака на основе диодов Pd-*n*-Si

© В.И. Балюба, В.Ю. Грицык, Т.А. Давыдова, В.М. Калыгина[¶], С.С. Назаров, Л.С. Хлудкова

Сибирский физико-технический институт им. В.Д. Кузнецова при Томском государственном университете, 634050 Томск, Россия

(Получена 9 июня 2004 г. Принята к печати 23 июня 2004 г.)

Исследовано влияние аммиака на электрические характеристики диодных структур Pd–n-Si. Изучена кинетика изменения характеристик диодов при воздействии аммиака. Показано, что быстродействием сенсоров аммиака на основе диодов Pd–n-Si можно управлять, подавая импульсы дополнительного потенциала на барьерный электрод.

В ранее опубликованных работах по влиянию аммиака на электрические характеристики полупроводниковых структур исследовались кремниевые МОП (металл-окисел-полупроводник) конденсаторы и полевые транзисторы. Затвор в них изготавливали напылением пленок металлов, обладающих каталитическими свойствами, (Pd, Pt, Ir и др.) [1] или использовалось различное сочетание тонких слоев этих металлов [2]. В атмосфере аммииака наблюдался параллельный сдвиг по оси напряжений вольт-фарадных характеристик (ВФХ) МОП конденсаторов и зависимости тока стока от напряжения на затворе для полевых транзисторов. Отклик структур на воздействие газа определяли как изменение напряжения плоских зон в конденсаторах [2] и порогового напряжения в транзисторах [1].

Результаты экспериментов объяснялись на основе модели Лундстрома, предложенной им для анализа влияния водорода на МОП структуры с палладиевым барьерным электродом [3]. Предполагалось, что адсорбированные на поверхности каталитически активного электрода молекулы NH₃ диссоциируют с образованием атомарного водорода (H_a) [1]. Атомарный водород диффундирует через пленку Pd и закрепляется на границе раздела Pd–SiO₂ в виде диполей. Дипольный слой изменяет работу выхода электронов из палладия, что вызывает изменение изгиба зон на поверхности полупроводника и, как следствие, изменение электрических характеристик полупроводниковых структур [1,2].

Однако проведенные оценки показали количественное несоответствие экспериментальных данных с предлагаемой моделью [4]. Оказалось, что отклик МОП конденсаторов и полевых транзисторов в газовых смесях NH₃/воздух, NH₃/Ar, NH₃/He и др. больше, чем следовало ожидать от влияния образовавшегося атомарного водорода.

В связи с отсутствием однозначной модели представляют интерес дальнейшие исследования влияния аммиака на полупроводниковые структуры.

В нашем сообщении представлены результаты исследований воздействия NH₃ на электрические характеристики структур Pd–*n*-Si. Известно, что конденсаторы и диоды на основе структур металл–диэлектрик– полупроводник (МДП) с Pd-электродом обнаруживают чувствительность к ряду восстановительных газов, включая аммиак, арсин, водород, сероводород, моноокись углерода и др. [5–12]. При одинаковых концентрациях и прочих равных условиях наибольшее изменение электрических характеристик МДП диодов с Pd-электродом получено при воздействии водорода [6,11,12].

Структуры, исследованные в данной работе, были изготовлены на основе эпитаксиальных слоев n-Si с удельным сопротивлением слоя 5-7 Ом · см. Сначала эпитаксиальные структуры подвергали окислению в потоке влажного кислорода при температуре 1100°С для получения пленки защитного диэлектрика SiO₂. Тыльный омический контакт к полупроводнику создавали нанесением алюминия с последующим отжигом в вакууме в течение 5 мин при температуре 530°С. На поверхность слоя SiO₂ катодным напылением наносили платиновую пленку, а затем с помощью фотолитографии формировали П-образный нагревательный элемент. В пленке SiO₂ вскрывали окна и термическим испарением в вакууме наносили пленку палладия. Палладиевый электрод плошалью $2.4 \cdot 10^{-3}$ см² формировали метолом взрывной фотолитографии. При использованной технологии изготовления структур палладиевый электрод оказывался отделенным от кремния туннельно-прозрачным слоем естественного окисла SiO_x. После изготовления диоды отжигали в воздушной среде в течение 10 мин при температуре 300°С, которая значительно превышала интервал используемых рабочих температур при последующих измерениях. После отжига кремниевую структуру разрезали на отдельные кристаллы размером 1×1 мм² и полученные образцы распаивали на кристаллодержатель.

Измерены вольт-амперные характеристики на постоянном напряжении, а также вольт-фарадные и вольтсименсные характеристики на частоте 1 МГц в воздушной среде и в газовой смеси аммиак/воздух.

В отличие от ранее исследованных диодов, полученные структуры не обнаруживают чувствительности к водороду даже при концентрации H_2 100%. При воздействии аммиака наблюдается увеличение прямого и обратного токов, емкости и проводимости. Зависимость отклика диодов на аммиак от напряжения описывается кривыми с максимумом. Наибольший эффект изменения электрических характеристик получен для обратных и прямых токов в интервале напряже-

[¶] E-mail: vmk@elefot.tsu.ru

Рис. 1. Зависимость от напряжения отношения тока в газовой смеси (700 ppm NH₃)/воздух (I_g) к току в воздушной среде (I_0).

Рис. 2. Зависимость от напряжения отношения емкости в газовой смеси (700 ppm NH₃)/воздух (C_g) к емкости в воздушной среде (C_0) при температуре T, °С: I - 57, 2 - 70, 3 - 96, 4 - 108, 5 - 120, 6 - 127.

ний U = (-0.5) - (+0.15) В (рис. 1), для емкости и проводимости на переменном сигнале при смещении на диоде U = 0.3 - 0.4 В (рис. 2). При фиксированной концентрации NH₃ отклик емкости, представленный отношением емкости в газе (C_g) к емкости в комнатной атмосфере (C_0), с повышением температуры (T) сначала возрастает, а затем падает (рис. 2).

Зависимости емкости и проводимости от концентрации аммиака (N) для одного из диодов при $T = 50^{\circ}$ С и рабочем напряжении 0.4 В приведены на рис. 3.

Одним из важнейший параметров газовых сенсоров является быстродействие, которое характеризуется временем отклика (τ_r) и временем восстановления (τ_f). За время отклика принимают временной интервал, за который фиксируемая величина изменяется до 0.9 от максимального значения (уровень 0.9). Время восстановления определяют как промежуток времени, в течение которого измеряемый параметр восстанавливается до 0.1 от максимальной величины (уровень 0.1).

При подаче газового импульса в измерительную камеру наблюдается ускорение установления стационарных значений емкости и проводимости при фиксированном рабочем напряжении (U_{op}) , если на барьерный электрод в течение 5–10 с подавать отрицательный потенциал, значительно превышающий U_{op} (рис. 4).

Как правило, $\tau_f > \tau_r$, поэтому для определения быстродействия сенсоров представляет интерес изучение кинетики восстановления параметров диодов после прекращения действия газового импульса. Для большинства диодов τ_r снижается с повышением рабочей температуры.

Время восстановления существенно зависит от условий, при которых происходит данный процесс. В связи с этим в нашей работе исследовалось влияние потенциала на палладиевом барьерном электроде на изменение проводимости диодов со временем. На рис. 5 показан спад проводимости при рабочем напряжении $U_{op} = 0.3$ В (кривая 1). Через 170 с после начала спада на паллади-

Рис. 3. Зависимость емкости C (1) и проводимости G (2) от концентрации аммиака N при рабочем напряжении 0.4 В и температуре 50°С.

Физика и техника полупроводников, 2005, том 39, вып. 2

Рис. 4. Изменение емкости C(1) и проводимости G(2) во времени *t* после подачи в измерительную камеру 700 ppm NH₃ при рабочем напряжении на диоде 0.2 В.

Рис. 5. Изменение проводимости G во времени t после прекращения воздействия 700 ppm NH₃ при рабочем напряжении на диоде 0.3 В.

евый электрод в течение 10 с подавали дополнительно отрицательный потенциал $U_{ad} = -2.3$ В, что вызвало замедление спада проводимости. Спустя еще 170 с на диод вновь в течение 10 с подавали отрицательный потенциал $U_{ad} = -2.3$ В, что снова привело к замедлению снижения проводимости. Пунктирные прямые 2 и 3 на рис. 5, полученные экстраполяцией участков экспериментальных кривых, показывают предполагаемые изменения G при бо́льших временах. Однако, если на каком-то этапе восстановления параметров диода на палладиевый электрод подать положительный потенциал, то процесс восстановления ускоряется. На рис. 5 этот эффект наблюдается при $U_{ad} = +2.3$ В.

Влияние положительного потенциала на барьерном электроде на временные зависимости проводимости наиболее ярко проявляется для U_{ad} в интервале 2–6 В. При дальнейшем увеличении U_{ad} повышение скорости релаксации G становится менее заметным.

На рис. 6 сравниваются кривые восстановления проводимости без подачи дополнительного потенциала на Pd-электрод (кривая 1) и при подаче несколько раз положительного (кривая 2) и отрицательного (кривая 3) потенциалов U_{ad} . Из полученных данных следует, что при положительном потенциале на Pd-электроде $(U_{ad} \gg U_{op})$ ускоряется процесс восстановления и повышается быстродействие сенсора. При отрицательном потенциале ($|U_{ad}| \gg U_{op}$) замедляется возвращение параметров сенсора к исходным значениям, которые диод имел до воздействия аммиака. Таким образом, изменяя знак потенциала и его амплитуду, можно регулировать быстродействие сенсоров на основе МДП диодов.

Отсутствие влияния водорода на структуры Pd-n-Si, исследованные в данной работе, объясняется образованием силицидов палладия (Pd₂Si, PdSi) в результате термического отжига [13,14]. Известно, что силициды палладия имеют металлический тип проводимости, но не обладают каталитическими свойствами.

Можно предположить следующий механизм формирования отклика диодов в атмосфере аммиака. За счет несоответствия параметров решеток кремния и пленок силицидов палладия возникают механические напряжения [13], при релаксации которых в барьерном электроде возникают микропоры и микротрещины. Молекулы NH₃, адсорбированные на внешней поверхности барьерного электрода, диффундируют сквозь металлическую пленку и достигают границы раздела Pd₂Si-Гтуннельно-тонкий

Рис. 6. Изменение проводимости G, нормированной на G(t = 0), во времени t после прекращения воздействия 700 ppm NH₃ при рабочем напряжении 0.3 В. Дополнительное напряжение на палладиевом электроде 0 В (I), +(4-10) В (2), -(4-6) В (3).

слой SiO_x[¬]. Дипольный момент молекул аммиака $\mu = 1.46$ D [15], и по аналогии с моделью для водорода можно считать, что образовавшийся слой диполей снижает работу выхода электронов из барьерного электрода. В результате уменьшается отрицательный изгиб зон на поверхности *n*-Si, что приводит к росту прямых и обратных токов, емкости и проводимости диодов.

Влияние электрического поля на кинетику восстановления емкости и проводимости диодов после окончания газового импульса, возможно, обусловлено изменением формы потенциальной ямы, в которую попадает молекула аммиака при адсорбции на границе раздела Pd—^гтуннельно-тонкий слой SiO_x[¬] [16]. При малых потенциалах на электроде, соответствующих рабочим напряжениям U_{op} , форма потенциального барьера практически не изменяется. При больших положительных смещениях на полевом электроде потенциальный барьер понижается, и вероятность выхода адсорбированной молекулы из потенциальной ямы резко возрастает.

Таким образом, исследованные структуры Pd-*n*-Si могут быть использованы при разработке сенсоров аммиака, селективных по отношению к водороду.

Список литературы

- J.F. Ross, I. Robins, B.C. Webb. Sensors Actuators, 11, 73 (1987).
- [2] A. Spetz, M. Armgarth, I. Lundström. Sensors Actuators, 11, 349 (1987).
- [3] I. Lundström. Sensors Actuators, 1, 403 (1981).
- [4] I. Lundström, M. Armgarth, A. Spetz, F. Winquist. Sensors Actuators, 10, 399 (1986).
- [5] W. Hornik. Sensors Actuators B, 4, 35 (1990).
- [6] M. Ogita, Dong-Bai Ye, K. Kawamura, T. Yamamoto. Sensors Actuators, 9, 157 (1986).
- [7] T. Fare, A. Spetz, M. Armgarth, I. Lundström. Sensors Actuators, 14, 157 (1988).
- [8] G.J. Maelay, K.W. Jelley, S. Nowrozi-Esfahani, M. Formosa. Sensors Actuators, 14, 331 (1988).
- [9] W. Mokwa, K. Dobos, G. Zimmer. Sensors Actuators, **12**, 333 (1987).
- [10] M. Peschke, H. Lorenz, H. Riess, I. Eisele. Sensors Actuators B, 1, 21 (1990).
- [11] В.И. Гаман, М.О. Дученко, В.М. Калыгина. Изв. вузов. Физика, № 1, 69 (1998).
- [12] В.И. Гаман, В.И. Балюба, Т.А. Давыдова, В.Ю. Грицык, В.М. Калыгина, Л.С. Хлудкова. Изв. вузов. Физика, № 11, 3 (2001).
- [13] C. Betty, Ch. Haydn, R. Kenneth. *Thin Films: Relationship Struct. Prop. Symp.*, San Francisco, 1985 (Pittsburgh, 1985) p. 155.
- [14] Г.А. Саров, Д. Кукуринков, А. Шопов. Сб. докл. Юбил. науч,-техн. конф. (Ботевград, 1987) ч. II, с. 158.
- [15] В.Ф. Киселев, С.Н. Козлов, А.В. Зотеев. Основы физики поверхности твердого тела (М., Изд-во МГУ, 1999).
- [16] L.-G. Petersson, H.M. Dannetun, J. Fogelberg, I. Lundström. J. Appl. Phys., 58, 404 (1985).

Редактор Л.В. Шаронова

Ammonia sensors based on Pd–*n*-Si diodes

V.I. Baljuba, V.Y. Grisyk, T.A. Davidova, V.B. Kalygina, S.S. Nazarov, L.S. Khludkova

Kuznetsov Siberian Physicotechnical Institute, Tomsk State University, 634050 Tomsk, Russia

Abstract The influence of ammonia on electrical characteristics of Pd–n-Si diode structures has been studied. Kinetics of the diode characteristics change on exposure to ammonia is investigated. It is shown that a fast response of ammonia sensors based on Pd–n-Si diodes may be controlled by applying the impulses of an additional potential to the barrier electrode.