Люминесценция $\lambda = 6-9$ мкм многослойных структур на основе InAsSb

© Н.В. Зотова, С.А. Карандашев, Б.А. Матвеев[¶], М.А. Ременный, Н.М. Стусь, Н.Г. Тараканова

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 31 мая 2004 г. Принята к печати 7 июня 2004 г.)

Описаны многослойные градиентные структуры $InAs_{1-x}Sb_x/.../InAs_{1-x-y}Sb_xP_y/n-InAs$, излучающие в диапазоне длин волн от 6 до 9 мкм при инжекции/экстракции и оптической накачке.

1. Введение

Наличие фундаментальных полос поглощения углеводородов, оксидов азота, других промышленных и природных газов в средней инфракрасной (ИК) области спектра (3-14 мкм) обусловливает перспективность разработки и применения оптических сенсоров на основе ИК светодиодов (СД) и фотодиодов (ФД) в приборах газового анализа для охраны окружающей среды и технологического контроля. Преимуществами оптических сенсоров являются селективность, обусловленная возможностью согласования спектральных характеристик СД, ФД и детектируемого газа, и высокое быстродействие, связанное с отсутствием химического взамодействия с анализируемой средой и ограниченное временем жизни неосновных носителей тока в полупроводнике. Другим применением ИК СД является тестирование тепловизионных систем, адаптированных обычно для одного из окон пропускания атмосферы (3-5 или 8-14 мкм). В обратно смещенном *p*-*n*-переходе экстракция неосновных носителей тока приводит к уменьшению излучательной способности поверхности СД по сравнению с ее равновесным (тепловым) значением, т.е. к появлению отрицательной люминесценции [1], что позволяет имитировать излучение "холодных" объектов, при этом понижение "оптической температуры" в зависимости от способа ее определения и конструктивных особенностей диодов составляет от 8 [2] до 53°С [3].

Основным материалом для создания СД, работающих на межзонных переходах в области длин волн 5–8 мкм, является антимонид индия. Электролюминесценция на длине волны $\lambda \approx 5.5$ мкм при комнатной температуре была получена в СД на основе гетероструктуры InSb/InAlSb [4], для областей $\lambda \approx 5$ и $\lambda \approx 8$ мкм — в СД на основе квантовой ямы InAs/InAsSb [5]. Иммерсионные свето- и фотодиоды на основе InSb, работающие при комнатной температуре, были использованы для детектирования NO₂ [6]. Дальнейшее продвижение в длинноволновую область спектра в СД на основе межзонных переходов может быть реализовано в твердом растворе InAsSb, ширина запрещенной зоны которого имеет характерный минимум в 95 мэВ вблизи составов InAs_{0.4}Sb_{0.6} при комнатной температуре. Ранее мы

сообщали о создании СД на основе p-n-перехода в градиентном слое InAsSbP с максимумом излучения $\lambda = 5.3$ мкм при комнатной температуре [7].

В данной работе сообщается о создании многослойных градиентных структур на основе InAsSb, излучающих в диапазоне длин волн от 6 до 9 мкм при инжекции/экстракции и оптической накачке. Представлены вольт-амперные, ватт-амперные и спектральные характеристики для перечисленных способов возбуждения исследуемых образцов.

2. Образцы и методика измерений

Образцы были получены методом жидко-фазной эпитаксии при температурах 650-720°C на подложке *n*-InAs(111). Для снижения дефектности рабочих слоев было выполнено ступенчатое наращивание буферных слоев с постепенным увеличением содержания сурьмы от слоя к слою [8], как показано на рис. 1. Здесь представлены распределение состава $InAs_{1-x-y}Sb_xP_y$, измеренное на рентгеновском микроанализаторе "САМЕВАХ", и распределение ширины запрещенной зоны, рассчитанной по соотношениям из работы [9], по толщине структуры по мере удаления от подложки InAs. На рис. 1 (вверху) приведено изображение скола, травленного в окрашивающем травителе. Резкое изменение яркости свидетельствует о скачкообразном изменении состава при переходе от слоя к слою. Исследовались электролюминесценция p-n-структуры, в которой p-n-переход был получен легированием Zn наиболее удаленного от подложки слоя $InAs_{1-x}Sb_x$, толщиной около 5 мкм, до концентрации дырок $\sim 5 \cdot 10^{17} \, {\rm cm}^{-3}$, и люминесценция при оптическом возбуждении нелегированных изотипных структур (концентрация электронов в верхнем слое $InAs_{1-x}Sb_x$ составляла $\sim 10^{17} \, \mathrm{cm}^{-3}$).

Измерения электролюминесценции выполнялись на образцах треугольной формы площадью $0.01 \,\mathrm{cm}^{-2}$ с краями, образованными сколотыми гранями (110). Образцы припаивались *p*-стороной на корпус TO-18, а катодный точечный контакт диаметром ~ 100 мкм был сформирован в центральной части треугольной поверхности *n*-InAs, аналогично образцам, исследованным в работе [10]. Вывод излучения осуществлялся через широкозонные слои *n*-InAssbP и подложку *n*-InAs.

[¶] E-mail: bmat@iropt3.ioffe.rssi.ru

Fax: (812)2477446

Рис. 1. Распределение состава $InAs_{1-x-y}Sb_xP_y$ (левая шкала) и ширина запрещенной зоны (правая шкала) по толщине структуры по мере удаления от подложки, а также фотография скола $(1\overline{10})$, декорированного в окрашивающем травителе (вверху).

Оптическое возбуждение создавалось излучением светодиода из GaAs ($\lambda \approx 0.87$ мкм, $\eta_{\text{ext}} \approx 8\%$), смонтированного на кремниевой подложке по технологии "flip-chip". Оптическое сопряжение узкозонного (люминесцирующего) слоя *n*-InAsSb с возбуждающим СД было выполнено с помощью халькогенидного стекла, имеющего показатель преломления n = 2.4, аналогично диодам, описанным в работе [11].

При проведении спектральных измерений было использовано синхронное детектирование импульсного сигнала (частота $f = 2 \kappa \Gamma \mu$, длительность импульса $\tau = 15 \text{ мкс}$), получаемого с охлаждаемого фотодиода из CdHgTe с максимумом спектральной чувствительности на длине волны 9.4 мкм. Значения мощности были получены с учетом диаграммы направленности СД и поглощения излучения парами воды в области 6 мкм.

3. Экспериментальные результаты и их обсуждение

3.1. Инжекционная люминесценция

Представленные на рис. 2, *а* вольт-амперные характеристики имеют диодный характер с участками насыщения обратного тока (I_S) при напряжении |U| > 0.05-0.01 В. Насыщение не является полным, что, видимо, связано с неоднородностью растекания тока в структуре с точечным контактом к слою с электронным типом проводимости и увеличением вклада удаленных (периферийных) от контакта областей в проводимость структуры при увеличении обратного смещения [10]. Это подтверждается отсутствием насыщения мощности отрицательной люминесценции и свидетельствует о незначительности утечек по поверхности. С ростом температуры увеличение собственной концентрации носителей тока приводит к возрастанию тока насыщения

Рис. 2. Вольт-амперные характеристики (*a*) и зависимости мощности люминесценции от тока накачки (*b*) для прямого (FB) и обратного (RB) напряжений смещений.

Рис. 3. Спектры люминесценции при прямом (a) и обратном (b) напряжении смещения при $T = 22^{\circ}$ С — сплошные линии, при T = 77К — штриховая кривая.

и уменьшению эффективности преобразования (мкВт/А) (рис. 2, b). Зависимости мощности люминесценции от тока при прямом и обратном смещениях имеют сублинейный или сверхлинейный характер из-за увеличения или уменьшения темпа безызлучателной рекомбинации Оже при увеличении или уменьшении концентрации неосновных носителей соответственно.

Спектры люминесценции (рис. 3) при малых токах $I = \pm 50$ мА в прямом и обратном направлениях имеют максимум при $\lambda = 6.15$ мкм и являются зеркальными отражениями друг друга. При увеличении тока в прямом направлении разогрев структуры приводит к сдвигу спектра в длинноволновую область, при этом величина перегрева, оцененная по температурному коэффициенту изменения ширины запрещенной зоны ближайшего аналога — InAs, составляет не более 30°С при I = 1 А. Форма спектров определяется хвостами плотности состояний в длинноволновой области и поглощением коротковолнового излучения в широкозонных слоях структуры. С понижением температуры до 77 К спектр сдвигается в коротковолновую сторону (штриховая линия), следуя за температурным сужением запрещенной зоны.

3.2. Фотолюминесценция

На рис. 4 представлен спектр оптически возбуждаемого (OB) СД на основе изотипной структуры *n*-InAsSb при комнатной температуре. Спектр имеет характерный

Рис. 4. Спектр люминесценции оптически возбуждаемого светодиода при 22°С.

Рис. 5. Коэффициент преобразования оптически возбуждаемого (OP LED) и светодиода на основе p-n-перехода (p-n LED) при 22°С.

Физика и техника полупроводников, 2005, том 39, вып. 2

провал в области 6.5 мкм, связанный с поглощением парами воды, и обрывается со стороны длинных волн при $\lambda \approx 9.3$ мкм, что связано с падением спектральной чувствительности фотоприемника. Интенсивность люминесценции в максимуме спектра $\lambda = 8.5$ мкм ($h\nu \approx 146$ мэВ) несколько меньше величины, которую можно было бы ожидать, исходя из расчета ширины запрещенной зоны по составу твердого раствора, что связано с джоулевым разогревом накачивающего GaAs-светодиода и соответственно прикрепленного к нему "люминесцирующего" слоя InAsSb. Полученное значение максимума излучения является, насколько нам известно, наиболее длинноволновым для люминесцентных источников на основе межзонных переходов в материалах A^{III}B^V, работающих при комнатной температуре.

На рис. 5 представлена зависимость коэффициента преобразования (КП [мкВт/А]) на линейном участке ватт-амперной характеристики электрически и оптически возбуждаемых СД (даннные для длин волн 4.3, 4.6 и 5.5 мкм взяты из работы [11]). Как видно, коэффициент преобразования в ОВ СД оказывается выше КП, ожидаемого в СД на основе p-n-перехода. Более высокое значение КП в ОВ СД на основе полупроводников *n*-типа связано, по-видимому, с отличием внутренного квантового выхода в материалах *n*- и *p*-типа. Дополнительным фактором, повышающим КП, являются конструктивные особенности ОВ СД, в котором области протекания тока и длинноволновой рекомбинации носителей пространственно разнесены и могут иметь поэтому существенно разную температуру в процессе работы.

4. Заключение

В работе сообщается о получении эпитаксиальных многослойных структур $InAs_{1-x}Sb_x/.../InAs_{1-x-y}Sb_xP_y/$ *n*-InAs с содержанием InSb в рабочем (верхнем) слое до x = 0.33, на которых наблюдалась люминесценция в области длин вон $\lambda \gtrsim 6$ мкм с коэффициентом преобразования от 4 до 10 мкВт/А при прямом и обратном смещениях соответственно. В конструкциях с оптическим возбуждением максимальная длина волны излучения составила 8–9 мкм, при этом коэффициент преобразования достиг 10 мкВт/А.

Список литературы

- [1] В.И. Иванов-Омский, Б.Т. Коломиец, В.А. Смирнов. Докл. АН СССР, **161**, № 6, 1308 (1965).
- [2] B.A. Matveev, M. A'daraliev, N.V. Zotova, S.A. Karandashev, M.A. Remennyi, N.M. Stus', G.N. Talalakin, V.K. Malyutenko, O.Yu. Malyutenko. SPIE Proc., **4285**, 109 (2001).
- [3] J.R. Lindle, W.W. Bewley, I. Vurgaftman, J.R. Meyer, J.B. Varesi, S.M. Johnson. IEE Proc. Optoelectron. 150, 365 (2003).
- [4] T. Ashley, C.T. Elliott, N.T. Gordon, R.C. Hall, A.D. Johnson, G.J. Pryce. Appl. Phys. Lett., 64 (18), 2433 (1994).

- [5] P.J.P. Tang, H. Hardaway, J. Heber, C.C. Phillips, M.J. Pullin, R.A. Stradling, W.T. Yuen, L. Hart. Appl. Phys. Lett., 72 (26), 3473 (1998).
- [6] J.G. Crowder, H.R. Hardaway, C.T. Elliott. Meas. Sci. Technol., 13, 882 (2002).
- [7] B.A. Matveev, N.V. Zotova, S.A. Karandashev, M.A. Remennyi, N.M. Stus', G.N. Talalakin. Optoelectron., 149 (1), 33 (2202).
- [8] D.T. Cheung, A.M. Anfrews, E.R. Gertner, G.M. Williams, J.E. Clarke. Appl. Phys. Lett., 30, 587 (1977).
- [9] Z.M. Fang, K.Y. Ma, D.H. Jaw, R.M. Cohen, G.B. Stringfellow. J. Appl. Phys., 67, 7034 (1990).
- [10] V.K. Malyutenko, O.Yu. Malyutenko, A.D. Podoltsev, I.N. Kucheryavaya, B.A. Matveev, M.A. Remennyi, N.M. Stus'. Appl. Phys. Lett., **79** (25), 4228 (2001).
- [11] М. Айдаралиев, Н.В. Зотова, С.А. Карандашев, Б.А. Матвеев, М.А. Ременный, Н.М. Стусь, Г.Н. Талалакин. ФТП, 36 (7), 881 (2002).

Редактор Т.А. Полянская

A $\lambda = 6-9 \,\mu$ m luminescence from InAsSb multilayer structures

N.V. Zotova, S.A. Karandashov, B.A. Matveev, M.A. Remennyi, N.M. Stus', N.G. Tarakanova

loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract The paper describes $InAs_{1-x}Sb_x/.../InAs_{1-x-y}Sb_xP_y/$ *n*-InAs multilayer structures that emit around 6.3 µm at forward and reverse bias applied to the *p*-*n* juction and around 8–9µm when optical pumping is employed for similar *n*-type structures with no *p*-*n* junction.