Циклотронный резонанс в легированных и нелегированных гетероструктурах InAs/AISb с квантовыми ямами

© В.Я. Алешкин, В.И. Гавриленко[¶], А.В. Иконников, Ю.Г. Садофьев*, J.P. Bird*, S.R. Jonhson*, Y.-H. Zhang*

Институт физики микроструктур Российской академии наук, 603950 Нижний Новгород, Россия * Department of Electrical Engineering and Center for Solid State Electronic Research, Arizona State University, Tempe, AZ 85287, USA

(Получена 1 июня 2004 г. Принята к печати 14 июня 2004 г.)

С помощью ламп обратной волны в диапазоне 150-700 ГГц исследованы спектры циклотронного резонанса в гетероструктурах AlSb/InAs/AlSb с квантовыми ямами с концентрацией двумерных электронов от $2.7 \cdot 10^{11}$ до $8 \cdot 10^{12}$ см⁻² при 4.2 К. Обнаружено значительное возрастание циклотронной массы от $0.03m_0$ до $0.06m_0$ с ростом концентрации электронов (и соответственно энергии Ферми), что типично для полупроводников с непараболическим законом дисперсии. Полученные результаты удовлетворительно согласуются с теоретическими расчетами циклотронных масс на уровне Ферми в рамках упрощенной модели Кейна.

1. Введение

В последнее время отмечается значительный интерес к гетероструктурам с квантовыми ямами (КЯ) InAs/AlSb, которые обладают целым рядом замечательных свойств. Так, квантовая яма для электронов является чрезвычайно глубокой (1.3 эВ), а подвижность при комнатной и гелиевой температурах может достигать $3 \cdot 10^4$ и $9 \cdot 10^5$ см²/В · с соответственно (см., например, [1–7]). Близость параметров кристаллических решеток InAs и AlSb обеспечивает возможность получения гладких границ раздела слоев, вследствие чего рассеяние на шероховатостях микрорельефа невелико. Такие системы являются перспективными для создания приборов среднего инфракрасного диапазона длин волн и высокочастотных транзисторов. Исследование спектров циклотронного резонанса (ЦР) является эффективным методом для определения непараболичности зоны проводимости и спинового расщепления уровней Ландау в КЯ InAs [8–11], однако до настоящего времени эти исследования были ограничены лишь номинально нелегированными гетероструктурами с двумерной концентрацией электронов до $1.4 \cdot 10^{12} \, \mathrm{cm}^{-2}$. Настоящая работа посвящена исследованиям ЦР в структурах AlSb/InAs/AlSb с квантовыми ямами, концентрация двумерных (2D) электронов в которых варьировалась от $2.7 \cdot 10^{11}$ до $8 \cdot 10^{12}$ см⁻². В предыдущих работах исследования ЦР выполнялись методом фурье-спектроскопии в магнитных полях выше 20 кЭ в диапазоне частот выше 1.5 ТГц. В данной работе в качестве источников монохроматического излучения использовались лампы обратной волны (ЛОВ), что позволило провести исследование спектров ЦР в диапазоне от 160-700 ГГц. Для интерпретации результатов эксперимента проведены расчеты циклотронных масс электронов в рамках модели Кейна.

2. Эксперимент

Исследуемые гетероструктуры выращивались методом молекулярно-пучковой эпитаксии на полуизолирующих подложках GaAs (100). Поскольку постоянные решетки AlSb и InAs значительно больше по сравнению с GaAs, активная часть структуры выращивалась на композитном буфере, состоящем из слоя GaAs толщиной 200 нм, слоя AlAs (100 нм при 570°С) и метаморфного буферного слоя AlSb или GaSb. Рост метаморфного буфера начинался с нанесения слоя AlSb толщиной 100 нм при 570°C, поверх которого выращивался толстый (2.4 мкм) слой AlSb при 570°C или GaSb при 510°C (образец 4, см. таблицу) [3,12]. Для всех образцов поверх буферного слоя выращивалась 10-периодная "сглаживающая" сверхрешетка GaSb(2.5 нм) / AlSb(2.5 нм) при 480-490°С. Активная часть структуры состояла из нижнего барьера AlSb толщиной 12 нм в нелегированных образцах (образцы 1-4) и 40 нм в селективно легированных образцах (образцы 5-8), квантовой ямы InAs номинальной толщиной 15 нм, верхнего барьерного слоя AlSb (Al_{0.8}Ga_{0.2}Sb в образце 3) толщиной 30-40 нм и покрывающего слоя GaSb, защищающего AlSb от реакции с парами воды на воздухе. Активная часть структуры выращивалась при температуре 480°С. При росте квантовой ямы InAs использовалась специальная последовательность прерываний поступления материалов (Al, Sb, In, As), обеспечивающая образование связей In-Sb на обеих гетерограницах AlSb/InAs/AlSb, что позволило получить высокую подвижность 2D электронов (в отличие от границ со связями Al-As) [13]. В образцах 5-8 проводилось б-легирование теллуром (из тигельного испарителя Ga₂Te₃) верхнего и нижнего барьеров AlSb на расстоянии 15 нм от квантовой ямы InAs.

Для характеризации двумерного электронного газа были проведены измерения эффектов Холла и Шубникова–де-Гааза на образцах прямоугольной формы размерами 15 × 4 мм², на которые наносились точечные

[¶] E-mail: gavr@ipm.sci-nnov.ru

Образец	$n_s^{\text{Hall}},$ 10 ¹² см ⁻²	$n_s^{1\text{SdH}},$ 10^{12} cm^{-2}	$n_s^{2\text{SdH}},$ 10 ¹² см ⁻²	n_s^{3SdH} , 10 ¹² см ⁻²	$n_s^{\rm PC}$, 10^{12} см $^{-2}$	<i>μ</i> , 10 ⁵ см ² /В · см	μ _{CR} , 10 ⁵ см ² /В · см	m_{c}/m_{0}
1	-	_	-	-	0.27	_	0.45	0.029-0.031
2	0.65	0.64	_	_	0.63	3.9	0.6 - 1.6	0.032 - 0.036
3	0.68	0.66	_	—	0.67	2.5	0.4 - 1.6	0.033 - 0.037
4	0.95	0.83	_	—	0.82	4.4	0.5 - 1.6	0.034-0.036
5	2.4	1.8	0.6	—	_	1.0	0.4	0.042 - 0.045
6	3.2	2.2	1.0	—	_	0.63	0.4	0.042 - 0.044
7	4.3	2.8	1.5	_	_	0.53	0.4	0.044 - 0.048
8	8.3	4.3	3.4	0.6	-	0.4	0.2	0.054 - 0.060

Параметры исследованных в работе нелегированных (1-4) и селективно легированных (5-8) образцов

омические контакты (геометрия холловского креста). Для исследования ЦР использовались образцы квадратной формы размерами 5 × 5 мм² с двумя полосковыми омическими контактами. Образцы размещались в криомагнитной вставке, помещаемой в транспортный гелиевый сосуд Дьюара СТГ-40. В качестве источников излучения использовались две лампы обратной волны OB-30 и OB-74, перекрывающие диапазоны частот 160-340 и 490-710 ГГц соответственно. Измерения проводились при температуре $T = 4.2 \, \text{K}$ при постоянной частоте излучения ЛОВ и развертке магнитного поля, направленного перпендикулярно поверхности образцов и параллельно направлению распространения излучения ЛОВ. Излучение модулировалось с помощью механического прерывателя (частота $f \approx 200 \, \Gamma$ ц). Прошедшее через структуру излучение детектировалось приемником n-InSb. Использовалась стандартная схема синхронного детектирования, сигнал с выхода синхродетектора оцифровывался аналого-цифровым преобразователем и записывался как функция магнитного поля. Для уменьшения эффектов интерференции подложки образцов стачивались на клин с углом 2°. Для некоторых образцов проводились измерения осцилляций субмиллиметровой фотопроводимости, которые аналогичны осцилляциям Шубникова-де-Гааза, с целью определения концентрации 2D электронов.

3. Расчет циклотронных масс электронов в гетероструктурах InAs/AISb

Для расчетов электронного спектра использовался гамильтониан Кейна, в котором пренебрегалось слагаемыми, пропорциональными квадрату волнового вектора, и слагаемыми, появляющимися из-за отстутствия центра инверсии в кристалле [14]. Использование предложенного в работе [15] базиса позволяет привести гамильтониан к блочном виду:

$$H=egin{pmatrix} H_+ & 0 \ 0 & H_- \end{pmatrix}.$$

При этом волновая функция имеет вид

$$\psi = egin{pmatrix} \psi_+ \ \psi_- \end{pmatrix},$$

где ψ_{\pm} удовлетворяют уравнениям

$$H_{\pm}\psi_{\pm} = E\psi_{\pm}.\tag{1}$$

Электронный спектр двукратно вырожден, H_{\pm} соответствуют одинаковые энергии. Решая уравнение (1), находим дисперсионные зависимости энергии электрона, находящегося в *n*-й подзоне, от *k*: $\varepsilon_n(k)$. Типичные дисперсионные зависимости для электронов в квантовой яме InAs/AlSb представлены на рис. 1.

Циклотронные массы на уровне Ферми находились из полученных зависимостей $\varepsilon_n(k)$ по формуле

$$m_c = \hbar^2 k \left(\frac{d\varepsilon}{dk}\right)^{-1}.$$
 (2)

Результаты расчета энергии для трех нижних подзон размерного квантования от квадрата волнового вектора в гетероструктуре AlSb / InAs с толщиной квантовой ямы

Рис. 1. Результаты расчета энергии для трех нижних подзон размерного квантования от квадрата волнового вектора в гетероструктуре AlSb/InAs с шириной квантовой ямы 205 Å (сплошная линия) и 150 Å (штриховая).

Физика и техника полупроводников, 2005, том 39, вып. 1

205 Å приведены на рис. 1. Структура имеет параметр решетки в плоскости роста, равный параметру решетки AlSb. Нуль энергии соответствует дну зоны проводимости InAs (без учета энергии размерного квантования). Отметим, что при нулевой температуре при заполнении только 1-й подзоны волновой вектор на уровне Ферми, k_F , определяется соотношением $n_s = k_F^2/2\pi$, где n_s — концентрация 2D электронов.

Для проверки точности алгоритма вычисления энергий электронных состояний в квантовой яме InAs были выполнены расчеты энергий межподзонных переходов, которые наблюдались экспериментально в работах [16,17]. Измеренные в работе [16] энергии перехода из первой подзоны во вторую для квантовых ям InAs толщиной 6.5, 7.7 и 8.6 нм составили 0.327, 0.273 и 0.245 эВ соответственно. Результаты нашего расчета для этих квантовых ям 0.329, 0.276 и 0.245 эВ находятся в хорошем согласии с экспериментом.

В работе [17] были измерены энергии межподзонных переходов для квантовых ям шириной 10, 8.4, 7.5, 7.0, 6.5, 6 и 5 нм. Энергии переходов для четырех наиболее широких ям при 10К составили 0.211, 0.244, 0.272 и 0.296 эВ. Рассчитанные энергии преходов для этих ям равны 0.208, 0.252, 0.284 и 0.305 эВ. В этих структурах вследствие значительной концентрации электронов необходимо учитывать деполяризационный сдвиг. Он приводит к смещению линии на несколько мэВ от коротковолнового края, которому соответствуют переходы с k = 0 (рассматривалась энергия именно таких переходов). Для этих структур расчет дает завышенное значение энергии перехода, причем расхождение теории и эксперимента увеличивается с уменьшением толщины ямы. Вероятно, это связано с неточностью определения толщин квантовых ям. Отметим, что и для этого эксперимента расхождение находится в пределах 5%, что показывает вполне удовлетворительное согласие теории и эксперимента.

4. Результаты и обсуждение

Параметры исследованных образцов представлены в таблице в порядке возрастания концентрации 2D электронного газа. Наряду с полной концентрацией n_s^{Hall}, определенной из измерений эффекта Холла, в таблице представлены концентрации электронов в 1, 2 и 3-й подзонах размерного квантования, определенные с помощью фурье-анализа осцилляций Шубникова-де-Гааза, $n_s^{1\text{SdH}}$, $n_s^{2\text{SdH}}$, $n_s^{3\text{SdH}}$, а также концентрация, определенная из осцилляций субмиллиметровой фотопроводимости, *n*^{PC}. Наиболее высокие значения подвижностей $(\mu \approx 4 \cdot 10^5 \, \text{см}^2/\text{B} \cdot \text{c})$ наблюдались в нелегированных образцах 2-4 с типичными значениями концентрации носителей (6-9) · 10¹¹ см⁻². В таких структурах подвижность ограничивается дальнодействующим потенциалом удаленных ионизованных примесей, который экранируется носителями заряда [12]. В номинально нелегированных образцах "поставщиками" электронов в КЯ InAs являются поверхностные доноры в покрывающем слое GaSb [4] и глубокие доноры в объеме барьерных слоев Al(Ga)Sb [18–20]. В селективно легированных образцах 5–8 подвижность постепенно уменьшается с ростом концентрации электронов вследствие рассеяния на ионизованных донорах в δ -слоях. Как можно заметить

Рис. 2. Типичные спектры ЦР в нелегированных образцах 1-4 (*a*) и 5-8 (*b*) при различных энергиях квантов излучения. Указаны номера образцов и энергии квантов.

Рис. 3. Зависимость циклотронной массы от концентрации: теоретический расчет для первых трех подзон КЯ InAs шириной 205 Å (сплошная линия), 150 Å (штриховая) и эксперимент (точки).

из таблицы, для образцов 2–4 концентрации электронов, определенные по эффектам Холла и Шубникова–де-Гааза несколько различаются. Данное расхождение связано скорее всего с существованием канала проводимости, параллельного КЯ InAs, а не с заполнением 2-й подзоны размерного квантования. Как показывает спектральный анализ осцилляций Шубникова–де-Гааза в селективно легированных образцах 5–6, заполнение второй подзоны начинается лишь при $n_s \approx 1.2 \cdot 10^{12}$ см⁻² (см. таблицу).

Типичные спектры ЦР привдены на рис. 2, а, b. Следует отметить, что подвижность электронов, определенная непосредственно по полуширине линии ЦР $\Delta H_{1/2}$ $(\mu_{\rm CR} = e/m_c \gamma,$ где $\gamma = (1/2)\omega\Delta H_{1/2}/H_{\rm res})$, для большинства представленных спектров значительно меньше, чем подвижность, полученная из измерений эффекта Холла и проводимости (см. таблицу). Это связано с насыщением циклотронного поглощения, обусловленным высокой подвижностью и (или) большой концентрацией носителей в исследуемых образцах. Значения циклотронных масс электронов $m_c = eH_{\rm res}/(2\pi c f)$, определенные по величине резонансного магнитного поля $H_{\rm res}$, приведены в таблице. Прослеживается заметное возрастание эффективной массы с ростом концентрации (и соответственно энергии Ферми). Такое возрастание типично для полупроводников с непараболическим законом дисперсии и было достаточно подробно изучено для номинально нелегированных гетероструктур InAs/AlSb с КЯ [11]. Для интерпретации полученных результатов в настоящей работе проведены расчеты циклотронных масс на уровне Ферми (2) в рамках описанной выше упрощенной модели Кейна. Результаты расчетов показывают, что при заполнении электронами двух или трех подзон размерного квантования величины эффективных масс на поверхности Ферми в разных подзонах отличаются незначительно, и это расхождение укладывается в рамки экспериментальных погрешностей определения циклотронных масс (см. таблицу).

На рис. 3 представлены измеренные значения циклотронных масс электронов в зависимости от концентрации носителей в 1-й подзоне, а также рассчитанные зависимости циклотронной массы для квантовых ям InAs шириной 205 и 150 Å. Видно, что расчет для номинальной (определенной из ростовых параметров) ширины квантовой ямы шириной 150 Å дает заметно худшее согласие с экспериментом, чем расчет для ямы шириной 205 А. Поскольку использованная модель закона дисперсии электронов обеспечивает хорошее согласие теории и эксперимента при расчетах энергий межподзонных переходов, естественно предположить, что расхождение связано с недостаточно точной калибровкой скоростей роста слоев. Для проверки этого предположения необходимо провести независимые измерения толщины слоя InAs в исследованных структурах.

Авторы признательны И.В. Ерофеевой и А.Н. Панину за помощь при подготовке измерений.

Список литературы

- G. Tuttle, H. Kroemer, J.H. English. J. Appl. Phys., 65, 5239 (1989).
- [2] H. Kroemer, C. Nguyen, B. Brar. J. Vac. Sci. Technol., 10, 1769 (1992).
- [3] C. Nguyen, B. Brar, C.R. Bolognesi, J.J. Pekarik, H. Kroemer, J.H. English. J. Electron. Mater., 22, 255 (1993).
- [4] Ch. Gauer, J. Scriba, A. Wixforth, J.P. Kotthaus, C. Nguyen, G. Tuttle, J.H. English, H. Kroemer. Semicond. Sci. Technol., 8, S137 (1993).
- [5] B.R. Bennett, M.J. Yang, B.V. Shanabrook, J.B. Boos, D. Park. Appl. Phys. Lett., **72**, 1193 (1998).
- [6] S. Brosig, K. Ensslin, B. Brar, M. Thomas, H. Kroemer. Physica E, 2, 214 (1998).
- [7] M.J. Yang, K.A. Cheng, C.H. Yang, J.C. Culbertson. Appl. Phys. Lett., 80, 1201 (2002).
- [8] M.J. Yang, P.J. Lin-Chung, R.J. Wagner, J.R. Waterman, W.J. Moore, B.V. Shanabrook. Semicond. Sci. Technol., 8, S129 (1993).
- [9] J. Scriba, A. Wixforth, J.P. Kotthaus, C.R. Bolognesi, C. Nguyen, G. Tuttle, J.H. English, H. Kroemer. Semicond. Sci. Technol., 8, S133 (1993).
- [10] M.J. Yang, P.J. Lin-Chung, B.V. Shanabrook, J.R. Waterman, R.J. Wagner, W.J. Moore. Phys. Rev. B, 47, 1691 (1993).
- [11] C. Gauer, J. Scriba, A. Wixforth, J.P. Kotthaus, C.R. Bolognesi, C. Nguyen, B. Brar, H. Kroemer. Semicond. Sci. Technol., 9, 1580 (1994).
- [12] Yu.G. Sadofyev, A. Ramamoorthy, B. Naser, J.P. Bird, S.R. Jonson, Y.-H. Zhang. Appl. Phys. Lett., 81, 1833 (2002).
- [13] G. Tuttle, H. Kroemer, J.H. English. J. Appl. Phys., 67, 3032 (1990).
- [14] G. Bastard. Wave mechanics applied to semiconductor heterostructures (Halsted Press, N.Y., 1988) p. 31–61.
- [15] В.Я. Алешкин, А.В. Аншон, Т.С. Бабушкина, Л.М. Батукова, Е.В. Демидов, Б.Н. Звонков, Т.С. Кунцевич, И.Г. Малкина, Т.Н. Янькова. ФТП, 26, 516 (1992).

74

- [16] I. Prevot, B. Vinter, F.H. Julien, F. Fossard, X. Marcadet. Phys. Rev. B, 64, 195 318 (2001).
- [17] D.C. Larrabee, G.A. Khodaparast, J. Kono, K. Ueda, Y. Nakajima, M. Nakai, S. Sasa, M. Inoue, K.I. Kolokolov, J. Li, C.Z. Ning. Appl. Phys. Lett., 83, 3936 (2003).
- [18] A. Furukawa, S. Ideshita. J. Appl. Phys., 75, 5012 (1994).
- [19] D.J. Chadi. Phys. Rev. B, 47, 13478 (1993).
- [20] J. Shen, J.D. Dow, S.Yu. Ren, S. Tehrani, H. Goronkin, J. Appl. Phys., 73, 8313 (1993).

Редактор Л.В. Шаронова

A cyclotrone resonance in both doped and non-doped InAs/AISb heterostructures with quantum wells

V.Ya. Aleshkin, V.I. Gavrilenko, A.V. Ikonnikov, Yu.G. Sadofyev*, J.P. Bird*, S.R. Jonhson*, Y.-H. Zhang*

Institute for Physics of Microstructures, Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia * Department of Electrical Engineering and Center for Solid State Electronic Research, Arizona State University, Tempe, AZ 85287, USA

Abstract Cyclotron resonance spectra of two-dimensional electrons have been investigated in AlSb/InAs/AlSb quantum well heterostructures at 4.2 K in the spectral range from 150 to 700 GHz using backward wave tubes, the electron concentration being from $2.7 \cdot 10^{11}$ to $8 \cdot 10^{12}$ cm⁻². A considerable increase in the cyclotron mass from $0.03m_0$ to $0.06m_0$ with the electron concentration (and correspondingly with the Fermi energy) has been discovered, which is typical for a semiconductor with a nonparabolic energy–momentum law. The results obtained are in good agreement with the calculated values of the cyclotron masses at the Fermi level in the framework of the simplified Kane model.