Кинетика роста поверхностного аморфного слоя при низкотемпературном облучении кремния быстрыми тяжелыми ионами

© А.Ю. Азаров¶

Санкт-Петербургский государственный политехнический университет, 195251 Санкт-Петербург, Россия

(Получена 17 мая 2004 г. Принята к печати 24 мая 2004 г.)

Рассмотрено накопление дефектов в приповерхностной области Si при облучении ионами Bi с энергией 0.5 МэВ при температуре –196°С. Показано, что накопление разупорядочения в приповерхностной области с ростом дозы облучения происходит как планарный рост аморфного слоя от границы Si–SiO₂, и этот рост начинается после достижения пороговой дозы облучения. Полученные результаты хорошо описываются в рамках модели, основанной на миграции генерируемых ионами мобильных точечных дефектов к поверхности и последующих процессах их сегрегации на межфазной границе, а также наличии насыщаемых стоков в исходных образцах.

Использование ионов энергий ~ 1 МэВ позволяет модифицировать свойства тведрого тела на значительную глубину [1,2]. Ионная бомбардировка всегда создает радиационные дефекты, поэтому понимание процессов их накопления необходимо для оптимизации технологии. Ранее [3] методом резерфордовского обратного рассеяния в сочетании с каналированием (РОР/К) было исследовано образование дефектов при облучении Si ионами Ві с энергией 0.5 МэВ. Было показано, что при температуре жидкого азота наряду с объемным, природа и кинетика роста которого были достаточно подробно рассмотрены в [3], наблюдается и поверхностный пик дефектов. Обычно подобный поверхностный пик дефектов наблюдается при облучении Si легкими ионами при комнатной температуре (T_k) [4,5] и соответствует тонкому полностью аморфному слою (АС) [6]. Следует отметить, что ввиду малости толщины этого слоя и недостаточного разрешения метода РОР/К поверхностный пик дефектов не имеет прямоугольной формы и его высота лежит ниже уровня, соответствующего полностью разупорядоченному образцу. Это хорошо иллюстрирует рис. 1, где в качестве примера точками показан фрагмент распределения относительной концентрации дефектов по глубине для дозы облучения $\Phi = 1.8 \cdot 10^{13} \, {\rm cm}^{-2}$, вычисленного из экспериментального спектра при помощи одного из общепринятых алгоритмов [7]. Для того чтобы оценить толщину поверхностного АС, профиль распределения дефектов по глубине у поверхности образца заменялся модельной функцией, имеющей прямоугольную форму с высотой, соответствующей полному разупорядочению и шириной h, которая бралась в качестве толщины поверхностного АС и определялась путем сравнения реального спектра с результатом свертки модельной функции и аппаратной. Аппаратная функция бралась в виде гауссиана со среднеквадратичным отклонением, определенным по наклону поверхностного края спектра для полностью аморфного образца. Результат такого моделирования для

случая облучения с $\Phi = 1.8 \cdot 10^{13} \text{ см}^{-2}$ представлен на рис. 1, где сплошной линией показана модельная функция, а штриховой — результат ее свертки с аппаратной функцией. Наконец, из полученного в результате моделирования значения *h* вычиталась толщина, связанная с наличием естественного поверхностного слоя SiO₂. Определенная таким образом зависимость $h(\Phi)$ показана на рис. 2 точками. Видно, что *h* увеличивается с ростом Φ , причем эффективный рост *h* начинается при достижении определенной пороговой дозы облучения. Ранее нами была предложена модель, описывающая кинетику роста AC при облучении Si легкими медленными ионами при T_k [8]. Предполагалось, что рост AC начинается от межфазной границы Si-SiO₂ и продолжа-

Рис. 1. Зависимость относительной концентрации дефектов в приповерхностной области от глубины (номера канала) для случая облучения Si (100) при температуре –196°С ионами Bi с энергией 0.5 МэВ и дозой 1.8 · 10¹³ см⁻². Точки экспериментальные результаты, сплошная линия — модельная функция, штриховая линия — результат свертки модельной и аппаратной функций.

[¶] E-mail: alazar@hotbox.ru

Рис. 2. Зависимость толщины аморфного слоя на поверхности Si (100) от дозы облучения при температуре –196°С ионами Bi с энергией 0.5 МэВ. Точки — экспериментальные результаты; сплошная линия — расчет.

ется далее за счет миграции и сегрегации на границе АС-кристалл генерируемых ионами мобильных точечных дефектов, а величина пороговой дозы определяется концентрацией насыщаемых стоков, изначально присутствующих в образце. Результат расчетов, выполненных на основании подобной модели для диффузионной длины L_d = 9 нм, являющейся в данной модели подгоночным параметром, представлен на рис. 2 линией. Отметим, что величина $L_d = 9$ нм близка к ее значениям, полученным в [6] для процессов, происходящих при T_k . Это может быть связано с тем, что уменьшение коэффициента диффузии мобильных точечных дефектов (авторами [9] было показано, что уменьшение температуры от T_k до -196° C снижает коэффициент диффузии по крайней мере в 10 и 100 раз для междоузлий и вакансий соответственно) компенсируется ростом их времени жизни.

Автор благодарен А.И. Титову и С.О. Кучееву за полезные обсужедния.

Список литературы

- [1] J.F. Ziegler. Nucl. Instrum. Meth. Phys. Res. B, 6, 270 (1985).
- [2] J.S. Williams, R.G. Elliman, M.C. Ridgway, C. Jagadish, S.L. Ellingboe, R. Goldberg, M. Petravic, W.C. Wong, Z. Dezhang, E. Nygren, B.G. Svensson. Nucl. Instrum. Meth. Phys. Res. B, 80–81, 507 (1993).
- [3] A.I. Titov, S.O. Kucheyev, V.S. Belyakov, A.Yu. Azarov. J. Appl. Phys., 90, 3867 (2001).
- [4] A.I. Titov, G. Carter. Nucl. Instrum. Meth. Phys. Res. B, 119, 491 (1996).
- [5] T. Lohner, M. Fried, N.Q. Khanh, P. Petrik, H. Wormeester, M.A. El-Sherbiny. Nucl. Instrum. Meth. Phys. Res. B, 147, 90 (1999).
- [6] J.A. van den Berg, S. Zhang, S. Whelan, D.G. Armour, R.D. Goldberg, P. Bailey, T.C.Q. Noakes. Nucl. Instrum. Meth. Phys. Res. B, 183, 154 (2001).

- [7] K. Schmid. Rad. Eff., 17, 201 (1973).
- [8] A.I. Titov, V.S. Belyakov, A.Yu. Azarov. Nucl. Instrum. Meth. Phys. Res. B, **212**, 169 (2003).
- [9] A. Hallén, B.G. Svensson. Rad. Eff. Def. Solids, 128, 179 (1994).

Редактор Л.В. Шаронова

Kinetics of surface amorphous layer growth under low temperature bombardment of Si with high energy heavy ions

A.Yu. Azarov

St. Petersburg State Polytechnical University, 195251 St. Petersburg, Russia

Abstract The defect accumulation near the surface of Si bombarded at -196° C with 0.5 MeV Bi ions has been considered. Results obtained show that the damage accumulation near the surface can be considered as a planar growth of an amorphous layer developing from the Si–SiO₂ interface after the reaching of a certain threshold irradiation dose. The results are in good agreement with a model based on concept of the mobile point defect diffusion to the surface and their subsequent segregation at the interface, since saturated sinks exist in samples before the irradiation.