Влияние сероводорода на фотоэлектрические характеристики изотипных гетероструктур AI–*n*-Si–SnO₂ : Cu–Ag

© С.В. Слободчиков , Е.В. Руссу, Э.В. Иванов, Ю.Г. Малинин, Х.М. Салихов

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 12 мая 2004 г. Принята к печати 17 мая 2004 г.)

Исследованы электрические и фотоэлектрические свойства гетероструктур Al-n-Si-SnO₂: Cu-Ag. Установлено, что токоперенос в данной структуре обусловлен двойной инжекцией носителей заряда в диффузионном приближении. При экспонировании гетероструктуры в газовой смеси 1%-H₂S/N₂ наблюдался прирост величины фототока на 35%. На воздухе исходные значения фототока восстанавливались. Времена нарастания и спада фотосигнала сравнительно невелики — 1 и 3 мин соответственно.

1. Введение

Для создания детекторов сероводорода (H_2S) , метана (CH_4) и ряда других газов широко используется диоксид олова (SnO_2) , электропроводность которого способна изменяться в атмосфере этих соединений [1,2]. Серьезным недостатком таких сенсоров является необходимость нагрева чувствительного слоя SnO_2 до температуры $300-400^{\circ}$ С. Кроме того, селективность указанных детекторов не всегда удовлетворяет современным требованиям.

В этой связи нами был предложен принципиально новый метод регистрации сероводорода, связанный с эффектом изменения фоточувствительности гетероструктур на основе диоксида олова в атмосфере H₂S [3]. Возможности данного метода были впервые продемонстрированы на примере анизотипных гетероструктур Al-*p*-Si-SnO₂:Cu-Ag [3]. В настоящей работе представлены результаты исследования электрических и фотоэлектрических характеристик изотипных структур Al-*n*-Si-SnO₂:Cu-Ag применительно к задаче детектирования сероводорода.

Технология получения гетероструктур обоих типов полностью аналогична и была достаточно подробно описана в работе [3]. В качестве подложек для структур Al–n-Si–SnO₂: Cu–Ag использовался *n*-Si с кристаллографической ориентацией (100).

Экспериментальные результаты и их обсуждение

На образцах гетероструктур Al–n-Si–SnO₂: Cu–Ag были проведены измерения вольт-амперных характеристик, спектральных кривых фотоэдс, а также зависимостей фототока от времени экспонирования структуры в газовой смеси азота и сероводорода. Объемная концентрация H_2S составляла 1%. Все измерения проводились при комнатной температуре $20-25^{\circ}$ C.

Зонная схема исследованной структуры показана на рис. 1.

2.1. Электрические характеристики гетероструктур

На рис. 2 представлена зависимость тока от прямого смещения (отрицательный потенциал — на *n*-Si), характерная для образцов, не подвергавшихся воздействию сероводорода.

В диапазоне токов $10^{-7} - 10^{-4}$ A данная кривая может быть аппроксимирована выражением

$$I = J_0 \exp[qU/(\nu kT)]$$
 при $\nu \approx 10,$ (1)

где все обозначения имеют свой обычный смысл. Отсюда следует, что токоперенос в гетероструктуре определяется не диффузионным током нейтральной базовой области (так как при этом $v \approx 1$) и не генерационнорекомбинационным током области объемного заряда (для этого случая $v \approx 2$). Значит, процесс токопереноса должен быть обусловлен одним из видой двойной инжекции носителей в область объемного заряда [4].

Поскольку в дрейфовом приближении двойная инжекция определяется степенной функцией тока от напряжения, аналитическая зависимость (1) описывает двойную инжекцию в диффузионном приближении. При этом $v = ch(w/L_A)$, где w и L_A — соответственно толщина области объемного заряда и длина амбиполярной диффузии.

Наличие компенсированного уровня Си может приводить к "прилипанию" дырок. Из анализа (1) следует, что при $(J_p/J) < 1$ и $(J_n/J) \approx 1$ (где J_p и J_n — ток дырок и электронов соответственно) влияние прилипания дырок

Рис. 1. Зонная диаграмма изотипной гетероструктуры Al-*n*-Si-SnO₂: Cu-Ag.

Рис. 2. Вольт-амперная характеристика гетероструктуры при прямом смещении до экспонирования в сероводороде.

на вид вольт-амперной характеристики будет слабым, поскольку через данную изотипную гетероструктуру в основном идет ток электронов.

При рассмотрении плазмы, инжектированной в полупроводник в условиях преобладания диффузионного тока, можно записать следующее соотношение, выражающее закон сохранения числа частиц [5]:

$$(2kT/q)d^2n/dx^2 \approx (b+1)n/(\mu_n\tau),$$
 (2)

где $b = \mu_n/\mu_p$, а все остальные переменные используются в их в обычном значении. Решение данного уравнения предсказывает экспоненциальный спад для функции n(x). При этом носители, инжектированные в полупроводник, будут сконцентрированы в области глубиной порядка $L_A = [(2kT/q)\mu_n\tau/(b+1)]^{1/2}$.

Наши предыдущие исследования анизотипных гетероструктур Al-p-Si-SnO₂:Cu-Ag [3] показали, что изменения вольт-амперных характеристик, наблюдаемые после экспонирования образцов в газовой смеси 1%-H₂S/N₂, являются малыми по сравнению с соответствующими изменениями фоточувствительности. Аналогичные результаты были получены ранее на различных структурах с палладиевым контактом, подвергавшихся воздействию водорода (см., например, [6]). По этой причине эксперименты по выяснению влияния H₂S на электрические характеристики изотипных структур Al-n-Si-SnO₂:Cu-Ag нами не проводились.

2.2. Фотоэлектрические характеристики гетероструктур

На рис. З представлены две зависимости спектральной фоточувствительности, зарегистрированные до экспозиции в смеси 1%-H₂S/N₂ (кривая *I*) и после этой экспозиции с дальнейшей выдержкой на воздухе (кривая *2*). Указанные зависимости были сняты в режиме фотоэдс разомкнутой цепи.

Результатом влияния сероводорода является сдвиг максимума спектральной кривой фоточувствительности на 0.09 эВ в коротковолновую область, а также значительный прирост величины фотоэдс. В качестве объяснения данного явления можно высказать следующие соображения.

В работе [7] изучалось влияние сероводорода на электрическую проводимость пленок SnO_2 , легированных медью. Было установлено, что в атмосфере сероводорода как на поверхности, так и в объеме слоя $SnO_2:Cu$ протекают химические реакции с участием меди и серы. В результате образуются сложные соединения, точный состав которых идентифицировать не удалось. Можно предположить, что аналогичные процессы происходят и в нашем случае.

Область пространственного заряда в *n*-Si содержит примесь меди, концентрация которой уменьшается при удалении от гетерограницы в направлении подложки. Поэтому при экспонировании в сероводороде в данной области возможно появление соединений серы с медью, которые будут распределены с бо́льшим градиентом, нежели исходная примесь меди. Если указанные соединения являются нейтральными или менее активными в отношении захвата неравновесных носителей, то произойдет снижение темпов рекомбинации вблизи гетерограниццы, где концентрация соединений серы с медью должна быть наиболее высока. В свою очередь это приведет к сдвигу спектральной кривой фотоэдс в коротковолновую область.

Наблюдаемый в эксперименте прирост абсолютной величины фотоэдс, по-видимому, должен быть связан

Рис. 3. Спектральная фоточувствительность структуры (1 — до экспозиции в газовой смеси 1%-H₂S/N₂, 2 — после экспозиции).

Рис. 4. Кинетика изменения фототока при освещении гетероструктуры излучением лампы накаливания (область I — в атмосфере 1%-H₂S/N₂, область II — на воздухе).

с соответствующим изменением высоты барьера на гетерогранице *n*-Si-SnO₂:Cu.

Следует отметить, что похожие спектральные кривые фотоэдс были получены ранее для анизотипных гетероструктур Al–p-Si–SnO₂:Cu–Ag [3]. Существенное отличие этих зависимостей от тех, что представлены в данной работе, заключается в следующем. Абсолютные значения фотоэдс для анизотипных структур были на порядок ниже, чем соответствующие величины, характерные для изотипных структур. Этот результат свидетельствует об относительно малом вкладе поверхностных состояний в рекомбинационный процесс в случае гетероструктуры Al–n-Si–SnO₂:Cu–Ag.

На рис. 4 показана диаграмма изменения фототока J_{ph} в зависимости от времени *t*, наблюдавшаяся для структуры Al–*n*-Si–SnO₂:Cu–Ag в атмосфере сероводорода (область I) и на воздухе (область II). Данная зависимость была зарегистрирована в режиме коротко замкнутой цепи. Гетероструктура Al–*n*-Si–SnO₂:Cu–Ag размещалась внутри специальной газовой кюветы. Ввод оптического излучения в кювету осуществлялся через сапфировое окно. Источником излучения служила лампа накаливания мощностью 60 Вт, располагавшаяся на расстоянии 30 см от исследуемого образца.

При напуске смеси 1%- H_2S/N_2 в газовую кювету величина фототока начинала увеличиваться. Спустя примерно 1 мин фотосигнал достигал стационарного уровня и переставал изменяться. Прирост фототока по отношению к своему начальному значению составлял ~ 35%. После удаления из кюветы сероводорода и напуска атмосферного воздуха фототок возврашался к той величине, которая имела место до экспонирования гетероструктуры в смеси 1%- H_2S/N_2 . Время релаксации сигнала составляло 3–4 мин. Во время последующих циклов напуска–выпуска сероводорода описанные процессы полностью повторялись.

Последние результаты не только количественно, но и качественно отличаются от соответствующих данных, которые были получены ранее для анизотипных гетероструктур Al-*p*-Si-SnO₂:Cu-Ag [3]. Для этих структур наблюдалось падение величины фототока в атмосфере

сероводорода с последующим восстановлением на воздухе. При этом характерные значения постоянных времени составляли 10–20 мин.

3. Заключение

Таким образом, проведенные эксперименты позволили изучить электрические и фотоэлектрические характеристики изотипных структур Al–*n*-Si–SnO₂: Cu–Ag. Обнаружен и исследован эффект изменения фоточувствительности данных гетероструктур в атмосфере сероводорода. Важное значение при этом имеют следующие особенности: достаточно высокий прирост величины фотосигнала, малые постоянные времени, обратимость физических процессов, а также возможность работы при комнатной температуре. Полученные результаты свидетельствуют о перспективности использования указанного эффекта для создания детекторов сероводорода.

Список литературы

- [1] W. Gopel. Progr. Surf. Sci., 20, 9 (1985).
- [2] Solid State Gas Sensors, ed. by P.T. Moseley, B.C. Tofield (Bristol-Philadelphia, Hilger, 1987) p. 51.
- [3] С.В. Слободчиков, Е.В. Руссу, Э.В. Иванов, Ю.Г. Малинин, Х.М. Салихов. ФТП, 38 (10), 1234 (2004).
- [4] Э.И. Адирович, П.М. Карагеоргий-Алкалаев, А.Ю. Лейдерман. В кн.: Токи двойной инжекции в полупроводниках, под ред. Е.И. Гальперина (М., Сов. радио, 1978) гл. 2, с. 55.
- [5] М. Ламперт, П. Марк. Инжекционные токи в твердых телах (М., Мир, 1973) гл. 13, с. 289.
- [6] Г.Г. Ковалевская, Л. Кратена, М.М. Мередов, А.М. Маринова, С.В. Слободчиков. Письма ЖТФ, 15 (12), 55 (1989).
- [7] Б.А. Акимов, А.В. Албул, А.М. Гаськов, В.Ю. Ильин, М. Лабо, М.Н. Румянцева, Л.И. Рябова. ФТП, **31** (4), 400 (1997).

Редактор Л.В. Беляков

The Influence of hydrogen sulphide on photoelectrical characteristics of Al–*n*-Si–SnO₂: Cu–Ag isotype heterostructures

S.V. Slobodchikov, Ye.V. Russu, E.V. Ivanov, Yu.G. Malinin, Kh.M. Salikhov

loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract Electrical and photoelectrical properties have been studied for Al–*n*-Si–SnO₂:Cu–Ag heterosrtructures. It has been found that the current transport in the structure is determined by a double injection of charge carriers in the diffusion approximation. When exposing the heterostructure to a 1%-H₂S/N₂ gas mixture, the photocurrent growth (35%) is observed. In free air initial photocurrent has restored its value. The time of rise and that of decay for the photosignal are comparatively short. They are 1 min and 3 min, respectively.