Фотолюминесценция электронно-дырочной плазмы в полуизолирующем нелегированном GaAs

© В.Ф. Коваленко[¶], С.В. Шутов

Институт физики полупроводников Национальной академии наук Украины, Херсонский отдел, 73008 Херсон, Украина

(Получена 14 августа 2003 г. Принята к печати 20 мая 2004 г.)

Исследована зависимость фотолюминесценции электронно-дырочной плазмы в полуизолирующем нелегированном GaAs от концентрации фоновой примеси углерода $N_{\rm C}$ ($3 \cdot 10^{15} \le N_{\rm C} \le 4 \cdot 10^{16} \,{\rm cm}^{-3}$) при 77 К. Установлено, что плотность электронно-дырочной плазмы, составляющая $n_{e-h} \approx 1.1 \cdot 10^{16} \,{\rm cm}^{-3}$ при интенсивности возбуждения $6 \cdot 10^{22}$ квант/см² · с в кристаллах с минимальной концентрацией примеси, существенно уменьшается при увеличении $N_{\rm C}$ в исследованном интервале. Снижение плотности электронно-дырочной плазмы с ростом $N_{\rm C}$ связывается с влиянием флуктуаций концентрации $N_{\rm C}$, обусловливающих неоднородное распределение взаимодействующих носителей заряда и локализацию дырок в "хвостах" плотности состояний валентной зоны.

Исследования фотолюминесценции (ФЛ) электроннодырочной плазмы (ЭДП) и электронно-дырочных капель (ЭДК) соответственно в прямозонных и непрямозонных полупроводниках проводились, как правило, на высокочистых материалах, использование которых обеспечивает выполнение условия $N < n_{e-h}$, n_{ex} (N, n_{e-h} , n_{ex} концентрации примеси, электронно-дырочных пар, экситонов соответственно) при высоких уровнях возбуждения и, как следствие этого, проявление коллективных взаимодействий неравновесных носителей заряда [1–6].

Очевидно, что увеличение N должно усиливать экранирующее влияние атомов примеси на носители заряда и ослаблять их взаимодействие. Представляется, что степень такого влияния может зависеть от электрофизических параметров материала, степени компенсации, характера распределения примесного потенциала. Однако возможное воздействие указанных факторов на ЭДП в прямозонных полупроводниках практически не исследовано.

В настоящем сообщении рассмотрена зависимость фотолюминесценции ЭДП в полуизолирующем нелегированном (ПИН) GaAs, содержащем флуктуации примесного потенциала, от концентрации фоновой примеси углерода $N_{\rm C}$. Электрофизические характеристики исследуемых образцов, методика измерения спектров ФЛ приведены в [7]. Уровень возбуждения J изменялся в пределах $3 \cdot 10^{21} - 6 \cdot 10^{22}$ квант/см² с за счет регулирования рабочего тока Аг-лазера.

Ранее было показано [7], что краевая полоса излучения в спектрах ФЛ кристаллов ПИН GaAs, содержащих фоновый углерод в концентрации $N_{\rm C}$, при низких уровнях возбуждения ($J \le 3 \cdot 10^{21}$ квант/см² · с) формируется межзонными переходами взаимодействующих носителей заряда при $N_{\rm C} \le 1.4 \cdot 10^{16}$ см⁻³, а при более высоких значениях $N_{\rm C}$ — рекомбинацией свободных электронов с дырками, локализированными в "хвостах" плотности состояний валентной зоны, обусловленных флуктуациями концентрации легирующей примеси.

увеличении интенсивности возбуждения При $(J > 3 \cdot 10^{21}$ квант/см² · с) происходила перестройка спектра краевой ФЛ, характерная для излучательной рекомбинации электронно-дырочной плазмы: максимум полосы (энергия максимума $hv = hv_m$) смещался в длинноволновую область, происходило расширение и изменение формы полосы. При этом коротковолновый спад становился более пологим (рис. 1), что свидетельствует о рекомбинации горячих носителей заряда, температура которых при максимальной интенсивности возбуждения, оцененная по наклону коротковолнового спада, увеличивалась в интервале T = 87-96 K при возрастании N_C в исследованном интервале $3 \cdot 10^{15} \le N_{\rm C} \le 4 \cdot 10^{16} \, {\rm cm}^{-3}$.

Спектр излучения некоторых кристаллов при самых высоких уровнях возбуждения проявлял пичковую структуру (рис. 1), обусловленную, очевидно, возникновением стимулированного излучения. Наиболее существенная перестройка спектра происходила в кристаллах с наименьшими значениями $N_{\rm C}$. С увеличением концентрации углерода она исчезала при $N_{\rm C} \approx 2.8 \cdot 10^{16}$ см⁻³, как это следует из экстраполяции зависимостей от $N_{\rm C}$ энергии максимума, $hv_m(N_{\rm C})$, и ширины полосы, $W(N_{\rm C})$, при различных уровнях возбуждения (рис. 2).

На рис. З приведена зависимость плотности ЭДП n_{e-h} при $J = 6 \cdot 10^{22}$ квант/см² · с от концентрации углерода, оцененной в приближении эффективного потенциала по формуле [4]

$$E'_g = E_g - rac{3e^2}{\pi arepsilon} (3\pi^2 n_{e-h})^{1/3},$$

где E'_g — ширина запрещенной зоны, "сокращенной" вследствие коллективного электронно-дырочного взаимодействия, E_g — ширина "невозмущенной" запрещенной зоны, $\varepsilon = 12$ — диэлектрическая проницаемость GaAs, e — заряд электрона. При оценке полагали $E'_g = hv_m$, значение E_g при $N_C \ge 1.4 \cdot 10^{16}$ см⁻³ уменьшали на глубину уровня протекания электронов и дырок $\gamma' = (2/3)\gamma$ (γ — глубина потенциальных ям, образованных флуктуациями концентрации углерода).

[¶] Fax: (0552)515457

Рис. 1. Зависимость формы спектра краевой ФЛ кристаллов с различными концентрациями углерода $N_{\rm C}$ от уровня возбуждения. $T = 77 \,\text{K}$. *J*, квант/см² · с: $I = 3 \cdot 10^{21}$, $2 = 6 \cdot 10^{22}$. $N_{\rm C}$, см⁻³: $a = 3.5 \cdot 10^{15}$; $b = 9 \cdot 10^{15}$; $c = 2.1 \cdot 10^{16}$. Спектры нормированы на 1 и смещены по вертикальной оси произвольным образом.

Приведенная на рис. З зависимость $n_{e-h}(N_{\rm C})$ показывает, как и предполагалось, уменьшение плотности ЭДП с ростом $N_{\rm C}$, причем более значительное по сравнению с аналогичным изменением плотности ЭДК в Ge [8]. Основным фактором, обусловливающим существенное снижение ЭДП при увеличении $N_{\rm C}$, является, по нашему мнению, наличие флуктуаций концентрации легирующей примеси, приводящих к неоднородному

Рис. 2. Зависимость ширины W(1-3) и энергии максимума $hv_m(1'-3')$ спектра краевой ФЛ от содержания углерода при различных уровнях возбуждения. T = 77 К. J, квант/см² · с: $I, I' = 3 \cdot 10^{21}; 2, 2' = 2 \cdot 10^{22}; 3, 3' = 6 \cdot 10^{22}.$

Рис. 3. Зависимость плотности ЭДП от концентрации углерода при $J = 6 \cdot 10^{22}$ квант/см² · с. T = 77 К.

распределению взаимодействующих носителей заряда. Локализация дырок в "хвостах" плотности состояний валентной зоны при $N_{\rm C} \ge 1.4 \cdot 10^{16}$ см⁻³, происходящая за времена, меньшие времени жизни неравновесных носителей заряда (по нашим оценкам при максимальной интенсивности возбуждения $\tau \le 1.3 \cdot 10^{-11}$ с, что соответствует приводимым ранее значениям τ в ПИН GaAs [9]), уменьшает долю носителей заряда, участвующих в образовании электронно-дырочной плазмы. Последнее обстоятельство в еще большей степени снижает ее плотность.

Список литературы

- [1] В.Б. Стопачинский. ЖЭТФ, 72 (2), 592 (1977).
- [2] В.С. Багаев, Л.И. Падучих, Г.С. Сахоненко. В кн.: Экситоны в полупроводниках (М., Наука, 1971) с. 54.

Физика и техника полупроводников, 2004, том 38, вып. 12

- [3] В.Г. Лысенко, В.И. Ревенко, Т.Г. Тратас, В.Б. Тимофеев. ЖЭТФ, 68 (1), 335 (1975).
- [4] T. Moriya, T. Kushida. J. Phys. Soc. Japan, 43 (5), 1646 (1977).
- [5] М.Н. Винославский, А.В. Кравченко. ФТП, **35** (4), 390 (2001).
- [6] В.А. Ващенко, Б.С. Кернер, В.В. Осипов, В.Ф. Синкевич. ФТП, **23** (8), 1378 (1989).
- [7] В.Ф. Коваленко, М.Б. Литвинова, С.В. Шутов. ФТП, 36 (2), 174 (2002).
- [8] D.L. Smith. Sol. St. Commun., 18, 637 (1976).
- [9] Н.М. Литовченко, Л.Г. Шепель. Оптоэлектрон. и полупроводн. техн., вып. 29, 108 (1995).

Редактор Л.В. Шаронова

The electron-hole plasma photoluminescence in semi-insulating undoped GaAs

V.F. Kovalenko, S.V. Shutov

Institute of Semiconductor Physics National Academy of Sciences of Ukraine, Kherson Division, 73008 Kherson, Ukraine

Abstract The electron-hole plasma photoluminescence dependence on the carbon content $N_{\rm C}$ $(3 \cdot 10^{15} \le N_{\rm C} \le 4 \cdot 10^{16} \,{\rm cm}^{-3})$ in undoped semi-insulating GaAs at 77 K are studied. It is established, that the hardness of electron-hole plasma $(n_{e-h} \approx 1.1 \cdot 10^{16} \,{\rm cm}^{-3})$ at $6 \cdot 10^{22}$ quantum/cm² s) in the crystals with the minimal admixture strength essentially decreases in the studied $N_{\rm C}$ interval with the growth of $N_{\rm C}$.