Электронный магнетотранспорт в связанных квантовых ямах с двухсторонним легированием

© Г.Б. Галиев, В.Э. Каминский[¶], И.С. Васильевский*, В.А. Кульбачинский*, Р.А. Лунин*

Институт СВЧ полупроводниковой электроники Российской академии наук,

117105 Москва, Россия

* Московский государственный университет,

119992 Москва, Россия

(Получена 16 февраля 2004 г. Принята к печати 23 марта 2004 г.)

Исследовано магнетосопротивление в слабых магнитных полях структур Al_xGa_{1-x}As/GaAs/Al_xGa_{1-x}As с двойными квантовыми ямами, разделенными тонким центральным барьером AlAs. Проведен стравнительный анализ точности описания наблюдающегося отрицательного магнетосопротивления по теории слабой локализации и в рамках кинетического подхода с помощью матрицы плотности. Показано, что кинетический подход в ряде случаев позволяет точнее описать экспериментальные зависимости.

1. Введение

Структуры $Al_x Ga_{1-x} As/GaAs/Al_x Ga_{1-x} As$ в настоящее время широко испльзуются для создания фотодетекторов, туннельных диодов, мощных транзисторов, оптоэлектронных приборов. В таких структурах для создания нужных характеристик часто используются связанные квантовые ямы, которые создаются с помощью разделения квантовой ямы GaAs тонким, толщиной порядка 3-4 монослоя, барьером AlAs [1,2]. В оптоэлектронных приборах квантовая яма, расположенная между симметричными барьерами Al_xGa_{1-x}As, позволяет получить необходимые спектральные характеристики. При поперечном транспорте электронов в таких структурах (перпендикулярно плоскости гетероструктуры) введение барьера позволяет управлять энергией резонасного уровня и, соответственно, видом вольт-амперной характеристики. В полевых транзисторах для применений в СВЧ электронике двухстороннее легирование структур $Al_xGa_{1-x}As/GaAs/Al_xGa_{1-x}As$ позволяет значительно увеличить выходную мощность [3-5].

Исследование электрофизических характеристик квантовых ям $Al_x Ga_{1-x} As/GaAs/Al_x Ga_{1-x} As$ представляет также большой интерес для фундаментальной физики. Изучение магнетотранспорта в таких структурах дает возможность значительно лучше определить механизмы и параметры рассеяния электрона. Так, например, при продольном транспорте (в плоскости структуры) изменение толщины барьеров меняет характер связи между ямами и параметры рассеяния электронов [6,7].

Для описания гальваномагнитных эффектов в полупроводниках традиционно используется метод кинетического уравнения для функции распределения электронов. Такой подход в большинстве случаев оправдан в слабом магнитном поле. Однако в настоящее время накоплено значительное количество экспериментальных данных, которые не имеют объяснения в рамках классического описания. Примером этого может служить отрицательное магнетосопротивление (продольное и поперечное). Это явление наблюдается в различных полупроводниковых объектах не только в слабом, но и в сильном магнитных полях. Например, в гетероструктурах $n-Al_xGa_{1-x}As/GaAs$ [8] и квантовых ямах $Al_xGa_{1-x}As/GaAs/Al_xGa_{1-x}As$ [9] при низких температурах наблюдались как положительное, так и отрицательное магнетосопротивление. В структурах с высокими подвижностью и концентрацией электронов магнетосопротивление было положительным. В структурах с низкой подвижностью электронов магнетосопротивление вначале было отрицательным, а при дальнейшем увеличении поля магнетосопротивление изменяло знак.

В структурах с низкой подвижностью и концентрацией электронов магнетосопротивление остается отрицательным вплоть до начала квантовых осцилляций. Например, в гетероструктурах *n*-GaAs/In_{0.07}Ga_{0.93}As/*n*-GaAs, δ -легированных кремнием с центре квантовой ямы, отрицательное магнетосопротивление наблюдалось вплоть до полей ~ 6 Тл в интервале температур 0.4–40 K [10]. В то же время в структурах InP/In_{0.53}Ga_{0.47}As [11] с более высокой подвижностью в области очень слабых полей наблюдалось положительное магнетосопротивление (антилокализация) для образцов с высокой поверхностной концентрацией электронов. В случае низкой концентрации электронов во всем диапазоне полей наблюдалось отрицательное магнетосопротивление.

Классическое магнетосопротивление $\delta = \rho_{xx}(B)/\rho_0 - 1$ двумерного вырожденного электронного газа при одной заполненной подзоне равно нулю. Известным механизмом положительного магнетосопротивления является заполнение нескольких подзон с различными подвижностями или наличие нескольких проводящих слоев в структуре. Для объяснения отрицательного магнетосопротивления Б.Л. Альтшулером, Д. Хмельницким и др. [12] была предложена теория квантовых поправок к проводимости.

Недавно в работах [13,14] была предложена другая трактовка отрицательного магнетосопротивления. Для описания магнетотранспорта был использован метод матрицы плотности и получены выражения для тензора

[¶] E-mail: kamin@zelnet.ru

Для проверки теории [13,14] в данной работе представлены результаты исследований магнетотранспорта в структурах $Al_{1-x}Ga_xAs/GaAs/Al_{1-x}Ga_xAs$ с различной шириной квантовой ямы. Для проведения сравнительного анализа были выращены идентичные структуры без барьера и с тонким барьером AlAs в центре квантовой ямы. При 4.2 К для данных структур были измерены зависимости компонент тензора удельного сопротивления от величины магнитного поля В.

2. Приготовление образцов и методика измерений

Образцы для исследования выращивались методом молекулярно-лучевой эпитаксии на полуизолирующих подложках GaAs(100), разориентированных в направлении [110] на 2°. Сначала выращивался буферный слой GaAs толщиной 0.5 мкм. Далее выращивались барьер Al_{0.2}Ga_{0.8}As, квантовая яма GaAs, барьер AlAs, квантовая яма GaAs, барьер Al_{0.2}Ga_{0.8}As. В конце процесса выращивался защитный слой GaAs толщиной 8 нм. Ширина обеих квантовых ям в каждой структуре была одинако-

1.0 0.8 AlAs 0.6 0.4E, eVAlGaAs AlGaAs 0.2 0 -0.2 QW n-GaA niini-GaAs GaAs 120 0 60 z, nm

Рис. 1. Зонная диаграмма структуры AlGaAs/GaAs/AlGaAs для образца 3. Энергия отсчитывается до уровня Ферми.

Физика и техника полупроводников, 2004, том 38, вып. 11

Экспериментальные и рассчитанные параметры исследованых образцов при температуре 4.2 К

№ образца:	2	3	4	5	6	7
<i>W</i> , нм	13	13	26	26	35	35
<i>b</i> , нм	0	1.8	0	1.8	0	1.8
$ ho_0$, Ом	468	373	300	328	218	249
$n_{\rm H}, 10^{12} {\rm cm}^{-2}$	1.33	1.31	2.07	2.09	2.02	2.01
$\mu_{\rm H}, {\rm m}^2/({ m B}\cdot{ m c})$	1	1.28	1	1.25	1.69	1.25
<i>B</i> _{tr} , Тл	0.009	0.006	0.005	0.004	0.003	0.004
<i>В</i> ₁ , Тл	0.39	0.32	0.55	0.22	0.17	0.4
μ_1 , м $^2/(\mathbf{B} \cdot \mathbf{c})$	0.88	1.23	0.75	1.1	1.62	1.33
$\mu_2, \mathbf{M}^2/(\mathbf{B}\cdot\mathbf{c})$	0.63	0.37	0.41	0.57	0.49	0.4
μ_3 , м $^2/(\mathbf{B}\cdot\mathbf{c})$	4.84	4.92	4.2	7.92	8.91	6
$n_1, 10^{12} \mathrm{cm}^{-2}$	1.06	1.13	1.76	1.54	1.68	1.42
$n_2, 10^{12} \mathrm{cm}^{-2}$	0.53	0.57	1.23	1.08	1.18	1.41
$n_3, 10^{10} \mathrm{cm}^{-2}$	1.27	1.47	1.41	1.23	1.34	1.14
$ au_{arphi}$, пс	0.7	0.8	1.1	1.1	1.1	1.1
au, пс	0.24	0.14	0.16	0.22	0.19	0.15

вой. Некоторые параметры исследованных образцов, в том числе толщина барьера AlAs b и ширина квантовой ямы W (суммарная — по обе стороны барьера AlAs), приведены в таблице. Толщина барьеров Al_{0.2}Ga_{0.8}As, формирующих квантовую яму, во всех структурах также была одинаковой и равнялась 33 нм, причем половина каждого из барьеров (по толщине), прилегающая к квантовой яме, оставалась нелегированной. Вторая же половина барьеров была легирована с концентрацией Si $\sim (1-2) \cdot 10^{18} \, \mathrm{cm}^{-3}$. Такой же была концентрация Si в защитном слое. Температура роста слоев GaAs и AlAs равнялась 600°С, а слоев Al_{0.2}Ga_{0.8}As — 640°С. Отношение потоков мышьяка и галлия в зоне роста было равно 30. На рис. 1 приведена рассчитанная зонная диаграмма для образца 3.

Для проведения гальваномагнитных измерений образцы были изготовлены в виде холловских мостиков. Для всех образцов при 4.2 К были измерены сопротивление в магнитном поле $\rho_{xx}(B)$ и сопротивление Холла $\rho_{xy}(B)$ в магнитном поле до 1 Тл. Из измерений определялись холловская концентрация электронов n_H и холловская подвижность µ_H. В таблице приведены эти параметры и $\rho_0 = \rho_{xx}(0)$ для каждой из структур.

Результаты гальваномагнитных 3. измерений и их обсуждение

Из таблицы видно, что в узкой квантовой яме с W = 13 нм введение барьера AlAs увеличивает холловскую подвижность, в то время как введение центрального барьера в широкой квантовой яме с W = 35 нм уменьшает подвижность — по сравнению с образцами без барьера. Подробно влияние такого барьера на подвижность было проанализировано в работе [7].

Как видно из зонной диаграммы (рис. 1), проводимость образцов может складываться из проводимости

потенциальной ямы со стороны подложки, барьеров $Al_{0.2}Ga_{0.8}As$, квантовой ямы и буфера. При температуре 4.2 К в легированном барьере $Al_{0.2}Ga_{0.8}As$ очень мала подвижность, а в буфере — концентрация, и проводимости по этим слоям можно не учитывать. Как известно, в слоистых структурах холловские подвижность и концентрация определяются из соотношений

$$\mu_{\rm H} = \frac{\sum\limits_{i}^{N} \gamma_i \mu_i^2 n_i}{\sum\limits_{i}^{N} \mu_i n_i}, \quad n_{\rm H} = \frac{\left(\sum\limits_{i}^{N} \mu_i n_i\right)^2}{\sum\limits_{i}^{N} \gamma_i \mu_i^2 n_i}, \tag{1}$$

где μ_i, n_i — подвижность и поверхностная концентрация электронов в *i*-м слое, γ_i — холл-фактор, *i* индекс суммирования по слоям. Для потенциальной и квантовой ям была решена системы самосогласованных уравнений Кона-Шэма аналогично работе [15]. Решение этой системы позволяет рассчитать концентрации электронов в квантовых ямах при заданных параметрах структуры и концентрации легирующей примеси в барьерах N_d. Расчет показывает, что электронный газ сильно заполненных подзон в потенциальной и квантовой ямах вырожденный. Поэтому для этих ям при расчетах в (1) было принято $\gamma_i = 1$. В дальнейшем им будут соответствовать индексы 1 и 2. В еще одной потенциальной яме со стороны подложки кроме того есть слабо заполненные подзоны, в которых электронный газ невырожденный и $\gamma_i > 1$. В дальнейшем носителям этой ямы будет соответствовать индекс 3. Однако $n_3 \ll n_1, n_2$ и проводимость этих подзон влияет только на магнетосопротивление. Тогда из (1) следует соотношение $n_1 < n_H < n_1 + n_2$. Близость величины n_H к тому или другому пределу зависит от величины отношения подвижностей $p = \mu_2/\mu_1$. Для концентраций электронов в ямах результаты расчета n_1 и n_2 приведены в таблице. Исследованные образцы выращивались в одинаковых условиях, поэтому в потенциальных ямах всех структур подвижности и концентрации электронов должны быть приблизительно одинаковыми.

В работе [7] для данных образцов были измерены зависимости сопротивления $\rho_{xx}(B)$ и холловского сопротивления $\rho_{xy}(B)$ в сильных магнитных полях. Во всех образцах наблюдались осцилляции Шубникова-де-Гааза. Фурье-анализ осцилляций показал наличие двух частот по обратному магнитному полю, что связано с электронами в квантовой и потенциальной ямах. Величина монотонной части зависимости $\rho_{xx}(B)$ для всех образцов приблизительно линейно возрастала при увеличении магнитного поля в диапазоне 1 < B < 8 Тл.

Для структур с двумя проводящими слоями классическое магнетосопротивление рассчитывалось из соотношения [16]

$$\delta = \frac{\rho_{xx}(B)}{\rho_0} - 1 = \frac{a}{p} \frac{x^2(p-1)^2}{(1+ap)^2 + x^2(1+a)^2}, \quad (2)$$

где $a = n_2/n_1$, $x = \mu_2 B$. Эта зависимость квадратична по магнитному полю при $x \ll 1$, в сильных полях

Рис. 2. Экспериментальные зависимости магнетосопротивления δ от магнитного поля для исследованных структур при T = 4.2 К. Номера кривых соответствуют номерам образцов в таблице.

магнетосопротивление достигает насыщения и

$$\delta_{\max} = \frac{a}{p} \left(\frac{p-1}{a+1} \right)^2. \tag{3}$$

Для образцов 6 и 7 расчет дает $\delta_{\max} \approx 0.4$. В эксперименте же наблюдались практически линейные зависимости $\rho_{xx}(B)$; значения магнитосопротивления при B = 5 Тл составляют для образца 6 $\delta = 2.7$, а для образца 7 — $\delta = 1.6$. Причины столь большого магнетосопротивления и расхождения с классическими теоретическими представлениями в работе [7] не обсуждались.

Для выяснения механизмов этого явления нами было исследовано магнетосопротивление при B < 1 Тл. Результаты измерений приведены на рис. 2. Как видно на этом рисунке, в диапазоне полей $0 < B < B_1$, где B_1 различно для разных образцов, наблюдается отрицательное магнетосопротивление.

Согласно теории слабой локализации [12], магнитное поле увеличивает продольную компоненту тензора проводимости. Величина добавки к проводимости определяется соотношением

$$\Delta \sigma_{xx}^{\rm WL} = G_0 \left[\psi \left(\frac{1}{2} + \frac{\tau B_{\rm tr}}{\tau_{\varphi} B} \right) - \psi \left(\frac{1}{2} + \frac{B_{\rm tr}}{B} \right) - \ln \left(\frac{\tau}{\tau_{\varphi}} \right) \right],\tag{4}$$

где $G_0 = q^2/2\pi^2\hbar$, q — заряд электрона, $\psi(x)$ — дигамма-функция, $B_{\rm tr} = q^2\rho_0/4\pi\hbar\mu$, μ — подвижность электронов, τ_{φ} — время сбоя фазы. В работе [12] результаты были рассчитаны для одного типа носителей тока. В работе [17] теория была обобщена на случай нескольких заполненных подзон размерного квантования. Показано, что в первом приближении все подзоны дают независимые вклады в отрицательное магнитосопротивление.

Из таблицы видно, что для наших структур $B_1 \gg B_{tr}$. Согласно теории слабой локализации [12], при $B > B_{tr}$

квантовые поправки к проводимости должны полностью подавляться. Если использовать классические выражения для проводимости и формулу (4), то для образцов 4 и 7 удается получить хорошее согласие расчетных и экспериментальных кривых в диапазоне 0 < B < 0.25 Тл. Для остальных кривых такое согласие удается получить только на начальных участках зависимостей $\delta(B)$ при B < 0.07 Тл. Отметим здесь, что для всех образцов согласие расчетных и экспериментальных кривых имеет место для $B \gg B_{\rm tr}$. Величины времени сбоя фазы τ_{ω} , соответствующие наилучшему согласию расчетных и экспериментальных кривых, также приведены в таблице. Расчет проведен в модели этих проводящих слоев для нескольких заполненных подзон в каждом. Как видно из таблицы, полученные величины т_o значительно меньше характерных при данной температуре времен для всех известных механизмов неупругого рассеяния на фононах в GaAs. Часто сбой фазы волновой функции в теории слабой локализации относят к электронно-электронному рассеянию. В этом случае т_ф должно уменьшаться при увеличении концентрации электронов. Однако в экспериментальных исследованиях структур *n*-GaAs/In_{0.07}Ga_{0.93}As/*n*-GaAs [10], $Al_xGa_{1-x}As/GaAs$ [18] и δ -легированного GaAs [19] с различной концентрацией электронов, но близких по остальным параметрам, такая зависимость не была обнаружена. В структуре n-GaAs/In_{0.2}Ga_{0.8}As/n-GaAs с затвором [20] исследования показали отсутствие выраженной функциональной зависимости τ_{φ} от концентрации электронов п. Причем анализ экспериментальных результатов показывает, что для абсолютно разных материалов с различной концентрацией и типом носителей тока вариация τ_{ω} не превышает десяти раз. Так, для электронного транспорта это время составляло 5.9 пс [10], 2.5 пс [18] и 10 пс [19]. В случае дырочного типа проводимости было получено значение 1 пс для $Al_xGa_{1-x}As/GaAs$ [21] и Si/Si_{0.85}Ge_{0.15}/Si [22]. В углеродной пленке с обоими типами носителей [23] время сбоя фазы равнялось 1.8 пс. Полученные в литературе результаты также не могут быть отнесены к неупругому рассеянию на фононах, так как указанные выше материалы имеют абсолютно разный фононный спектр. В таблице приведены также значения времени релаксации импульса т для слоя с меньшей подвижностью электронов.

Результаты расчетов магнетосопротивления для образцов 4 и 6 приведены на рис. 3. Из рис. 2 видно, что экспериментальные зависимости для этих образцов занимают крайние положения. Это позволяет оценить точность подгонки. Для остальных кривых точность будет иметь промежуточные значения. При расчете по теории слабой локализации в модели трех проводящих слоев хорошего согласия в широком диапазоне магнитных полей не удается получить ни для одной кривой. Это может быть связано с тем, что классическое магнетосопротивление невырожденного электронного газа имеет большую положительную величину. Кроме того, из таблицы видно, что для всех образцов не выполняет-

Рис. 3. Экспериментальные (сплошные линии) и рассчитанные зависимости магнетосопротивления для образцов 4 и 6. Пунктирными линиями показаны результаты расчета по теории слабой локализации, формула (4), а штриховыми — по формулам (7).

ся условие применимости теории слабой локализации $\tau_{\varphi} \gg \tau$ в диффузионном пределе [24]. В этом случае можно воспользоваться теорией квантовых поправок к проводимости Х. Виттманна и А. Шмида [25], справедливой при невыполнении диффузионного предела. Такой подход, в некоторых случаях, позволяет описать отрицательное магнетосопротивление [23].

В настоящей работе проведено сравнение точности описания экспериментальных зависимостей магнетосопротивления по теории слабой локализации и по теории, развитой в [13,14]. В этих работах в рамках кинетического описания переноса с помощью матрицы плотности показано, что в слабом магнитном поле, которому соответствует условие $\alpha = \hbar \omega / kT \ll 1$ ($B \ll 0.2$ Тл при T = 4.2 K), суммирование по уровням магнитного квантования можно, строго говоря, заменить интегрированием и тензор проводимости может быть представлен в виде

$$\sigma_{xx} = \sigma_{Bxx} + \frac{2q^2}{\sqrt{\pi}m} N_c \alpha \int \sqrt{x} \, dx \, \frac{\nu}{\omega^2 + \nu^2} \left(-\frac{\partial F}{\partial x} \right),$$

$$\sigma_{xy} = \sigma_{Bxy} + \frac{2q^2}{\sqrt{\pi}m} N_c \alpha \int \sqrt{x} \, dx \, \frac{\omega}{\omega^2 + \nu^2} \left(-\frac{\partial F}{\partial x} \right), \quad (5)$$

где σ_{Bxx} , σ_{Bxy} — значения, которые рассчитываются исходя из уравнения Больцмана, N_c — плотность состояний в зоне проводимости, F — функция распределения Ферми–Дирака, x = E/kT, $\omega = qB/m$, ν — частота рассеяния, зависящая, вообще говоря, от энергии. Как видно, при $\omega \to 0$ из формул (5) получаются стандартные выражения теории полупроводников. Отметим здесь, что практически обычно для замены суммирования интегрированием достаточно условия $\alpha < 0.7$. Из (5) следует, что в сильно вырожденном электронном газе, когда производную функции распределения можно, в первом приближении, заменить дельта-функцией,

магнетосопротивление $\delta = -\hbar\omega/E_{\rm F}$, где $E_{\rm F}$ — энергия Ферми. Точный расчет показывает, что в области слабых полей зависимость $\delta(B)$ может быть знакопеременной. В невырожденном электронном газе при низких температурах магнетосопротивление значительно больше, а знак определяется подвижностью. В нашем случае δ для разных образцов имеет разные знаки. Используя (5), можно показать, что проводимостью слабо заполненных подзон можно пренебречь, если $n_3 \ll n_0 = mkT/\pi\hbar^2$. При температуре 4.2 К расчет для GaAs дает значение $n_0 = 9.7 \cdot 10^9 \, \text{см}^{-2}$. Поэтому для наших структур последнее условие не выполняется (см. таблицу). Отсюда видно, что в гетероструктурах при низких температурах проводимость слабо заполненных подзон может существенно влиять на зависимость магнетосопротивления от поля. Чем ниже температура, при которой исследуется перенос в двумерном электронном газе, тем ниже должна быть концентрация электронов слабо заполненных подзон.

Численные расчеты, проведенные в работе [7], показали, что потенциальная яма содержит 2 уровня размерного квантования с высокой степенью заполнения и несколько очень слабо заполненных уровней. Число уровней в квантовой яме различно для разных структур и зависит от ширины ямы и наличия барьера. Концентрация и подвижность электронов на каждом из уровней разная. Однако мы дальнейший анализ ограничим моделью 3 проводящих слоев. В этой модели проводимость складывается из проводимостей квантовой ямы между гетеропереходами, потенциальной ямы на границе Al_{1-x}Ga_xAs/GaAs с буфером и суммарной проводимости слабо заполненных подзон размерного квантования. Каждый из слоев описывается эффективными подвижностями и концентрациями электронов. Через параметры слоев холловские подвижность и концентрация электронов определяются следующим образом:

$$\mu_{\rm H} = \frac{\mu_1}{S} \sum \alpha_i g_i^2, \quad n_{\rm H} = n_1 \frac{\mu_1}{\mu_{\rm H}} S, \tag{6}$$

где

$$\alpha_i = n_{si}/n_{s1} \ (i = 1, 2), \quad \alpha_3 = \frac{n_{s3}}{n_{s1}} \frac{e^d - 1}{d}, \quad d = n_{s3}/n_{s0},$$

 $n_{s0} = \frac{mkT}{\pi\hbar^2}, \quad g_i = \mu_i/\mu_1, \quad S = \sum \alpha_i g_i.$

Величины n_1 и n_2 были получены в работе [7]. Концентрации электронов слабо заполненных подзон потенциальной ямы зависят от параметров буфера. Поэтому расчетные величины их заполнения являются приблизительными. Очевидно, что $\mu_{\rm H}$ и $n_{\rm H}$ определяются в основном параметрами сильно заполненных подзон квантовой и потенциальной ям. Это позволяет из (1) определить подвижности электронов в ямах. Таким образом, у нас неизвестными остаются электронные параметры слабо заполненных подзон. Волновые функции электронов этих подзон имеют большую протяженность в области буфера. Поэтому подвижность электронов, занимающих эти подзоны, достаточно высока. Подгонка магнетосопротивления осуществляется варьированием этих параметров в узких пределах. Это достаточно простая задача.

Используя (1) и (5), несложно показать, что для нашей гетероструктуры

$$\sigma_{xx} = \frac{\sigma_0}{S} \sum \alpha_i g_i \frac{1+\beta_i}{1+g_i^2 x^2},$$

$$\sigma_{xy} = x \frac{\sigma_0}{S} \sum \alpha_i g_i^2 \frac{1+\beta_i}{1+g_i^2 x^2},$$
 (7)

где

$$x = \mu_1 B, \quad \sigma_0 = 1/\rho_0, \quad \beta_i = 2 \frac{\rho_0}{R_Q} x \sum \alpha_i g_i,$$
$$\beta_2 = \beta_1 \frac{\alpha_1}{\alpha_2}, \quad \beta_3 = \frac{n_{s1}}{n_{s3}} d\beta_1, \quad R_Q = \frac{2\pi\hbar}{q^2}.$$

Расчет по этим формулам позволяет подогнать экспериментальные зависимости магнетосопротивления. Результаты расчета приведены в таблице. На рис. 3 приведены экспериментальные и рассчитанные зависимости $\delta(B)$ для двух образцов в интервале полей, соответствующих величинам 0 < α < 1.2. Как видно из рис. 3, в случае отрицательного магнетосопротивления (образец 4) получено очень хорошее согласие с экспериментом. Для образца 6 хорошее согласие имеет место для $\alpha < 0.9$ $(B < 0.18 \, \text{Tл})$. При $\alpha > 1.2$ расхождение становится существенным. Одной из возможных причин расхождения является тот факт, что при таких значениях α замена суммирования интегрированием уже не совсем корректна. В этом случае нужно использовать точные формулы из работ [13,14], в которых производится суммирование по уровням магнитного квантования. Однако более существенным для точности расчетов оказывается то, что при получении (7) в [13,14] из общих выражений для тензора проводимости были опущены слагаемые, содержащие функцию $Z(\omega)$. Как показано в [13,14], Z(0) = 0и растет при увеличении поля. В сильных магнитных полях именно $Z(\omega)$ определяется вид магнетосопротивления. Это особенно существенно для адекватного описания положительного магнетосопротивления. Поэтому в нашем случае для образца 6 необходим учет этих слагаемых.

4. Заключение

В работе исследовано магнетосопротивление в слабых магнитных полях в гетероструктурах со связанными квантовыми ямами различной ширины. Показано, что наблюдаемое отрицательное магнетосопротивление в интервале магнитных полей от нуля до 0.2–0.6 Тл может быть описано в рамках квантового кинетического подхода. Данный подход позволяет удовлетворительно описать зависимость сопротивления от магнитного поля. Расчет показывает, что в сложных гетероструктурах эта зависимость определяется соотношением концентраций и подвижностей электронов во всех слоях. В частности, в исследованных образцах отрицательное магнетосопротивление в значительной степени обусловлено вкладом невырожденного электронного газа слабо заполненных подзон размерного квантования.

Работа выполнена при финансовой поддержке Министерства промышленности, науки и технологий РФ, государственный контракт № 40.072.1.1.1178.

Список литературы

- W. Trzeciakowski, B.D. McCombe. Appl. Phys. Lett., 55, 891 (1989).
- [2] A. Lorke, U. Merkt, F. Malcher, G. Weimann, W. Schlapp. Phys. Rev. B, 42, 1321 (1990).
- [3] J.-L. Cazaux, N.G. Geok-Ing, D. Pavlidis, H.-F. Chau. IEEE Trans. Electron. Dev., 35, 1223 (1988).
- [4] M. Nawaz. Sol. St. Electron., 43, 687 (1999).
- [5] C.S. Whelan, W.E. Hoke, R.A. McTaggart, S.M. Lardizabal, P.S. Lyman, P.F. Marsh, T.E. Kazior. IEEE Electron. Dev. Lett., 21, 5 (2000).
- [6] J.E. Hasbun. J. Phys.: Condens. Matter., 14, R143 (2003).
- [7] Г.Б. Галлиев, В.Э. Каминский, В.Г. Мокеров, В.А. Кульбачинский, Р.А. Лунин, И.С. Васильевский, А.В. Деркач. ФТП, 37, 711 (2003).
- [8] А. де Виссер, В.И. Кадушкин, В.А. Кульбачинский, В.Г. Кытин, В.М. Скороходов, Е.Л. Шангина. ЖЭТФ, 105, 1701 (1994).
- [9] В.А. Кульбачинский, Р.А. Лунин, В.Г. Кытин, А.С. Бугаев, А.П. Сеничкин. ЖЭТФ, 110, 1517 (1996).
- [10] G.M. Minkov, S.A. Negashev, O.E. Rut, A.V. Germanenko, O.I. Khrykin, V.I. Shashkon, V.M. Danil'tsev. Phys. Rev. B, 61, 13172 (2000).
- [11] А.М. Крещук, С.В. Новиков, Т.А. Полянская, И.Г. Савельев. ФТП, 31, 459 (1997).
- [12] B.L. Altshuler, D. Khmelnitzkii, A.I. Larkin, P.A. Lee. Phys. Rev. B, 22, 5142 (1980).
- [13] В.Э. Каминский. ФТП, 36, 1360 (2002).
- [14] V.E. Kaminskii. Phys. Rev. B, 67, 085 201 (2003).
- [15] В.Э. Каминский. ФТП, 23, 662 (1989).
- [16] A. Isihara, L. Smrčka. J. Phys. C: Sol. St. Phys., 19, 6777 (1986).
- [17] Н.С. Аверкиев, Л.Е. Голуб, Г.Е. Пикус. ФТП, 32, 1219 (1998).
- [18] M.Y. Simmons, A.R. Hamilton, M. Pepper, E.H. Linfield, P.D. Rose, D.A. Ritchie. Phys. Rev. Lett., 84, 2489 (2000).
- [19] Г.М. Миньков, С.А. Негашев, О.Э. Рут, А.В. Германенко, В.В. Валяев, В.Л. Гуртовой. ФТП, **32**, 1456 (1998).
- [20] G.M. Minkov, A.V. Germanenko, O.E. Rut, A.A. Sherstobitov, B.M. Zvonkov, E.A. Uskova, A.A. Birukov. Phys. Rev. B, 64, 193 309 (2001).
- [21] Y. Yaish, O. Prus, E. Buchstaf, G. Ben Yoseph, U. Sivan. cond.mat./0109469, V1 (2001).
- [22] M.S. Kagan, G.M. Min'kov, N.G. Zhdanova, E.G. Landsberg, I.V. Altukhov, K.A. Korolev, R. Zobl, E. Gornik. Proc. 11th Int. Symp. "Nanostructures: Physics and Technology" (St.Petersburg, Russia, 2003) p. 279.

- [23] R.T.F. van Schaijk, A. de Visser, S.G. Ionov, V.A. Kulbachniskii, V.G. Kytin. Phys.Rev. B, 57, 8090 (1998).
- [24] В.Ф. Гантмахер. Электроны в неупорядоченных средах (М., Физматлит, 2003) гл. 2, с. 24.
- [25] H.P. Wittman, A. Schmid. J. Low Temp. Phys., 69, 131 (1987).

Редактор Т.А. Полянская

Electron magnetotransport in coupled quantum wells with double sided doping

G.B. Galiev, V.E. Kaminskii, I.S. Vasil'evskii*, V.A. Kulbachinskii*, R.A. Lunin*

Institute of UHF Semiconductor Electronics, Russian Academy of Sciences 117105 Moscow, Russia

- * Moscow State University,
- 119992 Moscow, Russia