Влияние сероводорода на электрические и фотоэлектрические свойства гетероструктур Al-*p*-Si-SnO₂: Cu-Ag

© С.В. Слободчиков, Е.В. Руссу, Э.В. Иванов, Ю.Г. Малинин, Х.М. Салихов

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 30 декабря 2003 г. Принята к печати 15 марта 2004 г.)

Для гетероструктуры Al-*p*-Si-SnO₂: Cu-Ag проведены исследования вольт-амперных характеристик, спектральной фоточувствительности, зависимости фототока от смещения и влияния на них газовой смеси 1%-H₂S/N₂. Установлен механизм токопереноса для темновых и световых носителей $J \propto U^2$. Результатом экспонирования в сероводороде является сдвиг спектральной кривой фотоэдс в коротковолновую область. Кинетика спада фототока в атмосфере сероводорода характеризуется большими временами релаксации.

1. Введение

Диоксид олова SnO_2 широко используется для создания сенсоров различных газов: сероводорода H_2S , метана CH₄, окиси углерода CO и некоторых других [1,2]. Действие таких сенсоров основано на изменении электропроводности слоя SnO_2 в атмосфере детектируемого газа.

Несмотря на ряд важных достоинств, к числу которых относятся высокая чувствительность и простота конструкции, указанные сенсоры имеют и существенные недостатки. Одним из таких отрицательных качеств является необходимость в нагреве чувствительного элемента до 300–400°С, что в свою очередь требует значительных затрат мощности. Кроме того, селективность сенсоров на основе диоксида олова по отношению к некоторым газам не слишком высока.

Между тем именно технические требования выступают на первый план в большинстве случаев практического использования газоанализаторов. Необходимо, в частности, чтобы прибор был выполнен в переносной (или даже портативной) модификации, имел низкое энергопотребление, обеспечивал необходимую чувствительность и селективность анализа и при этом был способен эффективно функционировать в специфических производственных условиях.

В этой связи представляет интерес исследование свойств диоксида олова применительно к задаче детектирования различных газов с помощью физических эффектов, отличных от тех, что применяются в существующих газоанализаторах на основе SnO₂.

В ряде работ [3–5] было показано, что чувствительность традиционных газовых сенсоров, использующих принцип изменения электропроводности рабочего элемента, может быть существенно повышена за счет легирования диоксида олова медью. Такие структуры, очевидно, привлекают к себе внимание в первую очередь.

В настоящей работе представлены некоторые результаты экспериментов по созданию гетероструктур на основе SnO₂:Cu, изучению их электрических и фотоэлектрических характеристик и исследованию влияния сероводорода на данные характеристики.

2. Технология изготовления гетероструктур

Для подложек использовался *p*-Si с кристаллографической ориентацией (100), пластины которого размещались в реакторе горизонтального типа.

Осаждение тонких слоев SnO_2 : Си осуществлялось методом пульверизации. Технологический процесс проводился в атмосфере кислорода при температуре подложки 300–400°С. При этом расход кислорода составлял 0.7 л/мин. Длительность пульверизации раствора на подложку составляла 90–220 с. Осаждение проводилось через круглые маски, так что диаметр гетероструктуры составлял 1 мм.

Раствор для пульверизации получался растворением хлорида олова в этаноле до достижения вязкости 0.04 П. Легирование медью проводилось из раствора $0.1M \operatorname{SnCl}_2 \cdot 2H_2O + 0.01M \operatorname{CuCl}_2 \cdot 2H_2O$ в этиловом спирте.

3. Экспериментальные результаты и их обсуждение

На полученных образцах гетероструктур были проведены измерения вольт-амперных и вольтьемкостных характеристик, спектральных кривых фотоэдс, а также зависимостей фототока от смещения.

Чтобы изучить влияние сероводорода на указанные характеристики, исследуемые образцы помещались на некоторое время в газовую кювету, наполненную смесью азота и сероводорода. Объемная концентрация сероводорода в кювете составляла 1%.

Все измерения проводились при комнатной температуре 20–25°С.

3.1. Электрические характеристики гетероструктур

Вольт-амперные характеристики (ВАХ) одного из типичных образцов при прямых смещениях (плюс на *p*-Si) представлены на рис. 1. Кривые были измерены до

Рис. 1. Вольт-амперные характеристики гетероструктуры Al-*p*-Si-SnO₂: Cu-Ag при прямом смещении (кривая *1* — до экспозиции в газовой смеси 1%-H₂S/N₂, кривая *2* — после экспозиции).

Рис. 2. Зонная схема гетероструктуры $Al-p-Si-SnO_2$: Cu-Ag.

экспонирования образца в атмосфере 1%-H₂S/N₂ (кривая *I*), а также после экспозиции в указанной газовой смеси в течение 5–10 мин и последующей выдержки в воздухе в течение суток (кривая 2).

Как видно из рисунка, характер зависимости прямого тока от напряжения в обоих случаях одинаков, однако имеются некоторые количественные расхождения. Обе кривые содержат два участка: омический $(J \propto U)$ и квадратичный $(J \propto U^2)$. Наличие этих участков, очевидно, обусловлено особенностями электрических и зонных характеристик гетероструктуры.

Оценка толщины относительно высокоомного слоя данной структуры, сделанная на основе емкостных измерений, дает величину 1.0–1.5 мкм. При этом значение концентрации электронов, вычисленное исходя из зависимости $C^{-2} = f(U)$, составляет $n_0 \leq 10^{12}$ см⁻³. Данная высокоомная область могла образоваться вследствие компенсации доноров в n-SnO₂ примесью меди. Возможная зонная схема гетероструктуры представлена на рис. 2.

Исходя из этого наблюдаемые особенности прямой ветви ВАХ объясняются двойной инжекцией носителей: дырок из *p*-Si (ток *J*_{*p*}) и электронов из металла в

6* Физика и техника полупроводников, 2004, том 38, вып. 10

n-SnO₂: Cu (ток J_n), причем коэффициенты инжекции J_p/J и J_n/J (где J — полный ток) будут неодинаковы.

Следует отметить, что обратная ветвь ВАХ не показывает механизма двойной инжекции (т.е. J_n/J и $J_p/J \ll 1$), выявляя область насыщения тока, характерную для обычной диодной структуры.

Рассмотрим особенности двойной инжекции применительно к исследуемой гетероструктуре. Преобразовывая уравнение сохранения числа частиц, можно записать [6]

$$(n_0 - p_0)dE/dx + (2kT/q)d^2n/dx^2$$

 $\approx (b+1)(n-n_0)/(\mu_n\tau),$ (1)

где $b = \mu_n/\mu_p$, E — напряженность электрического поля, а все остальные обозначения имеют свой обычный смысл. При выводе уравнения (1) используется предположение о том, что влиянием плазмы, инжектированной в изолятор, можно пренебречь.

Если в большей части слоя SnO_2 : Си (область I на рис. 2) преобладает первый член уравнения (1), то

$$J \approx q(n_0 - p_0)\mu_n \mu_p \tau U^2 / L^3,$$
 (2)

где *L* — длина области I. Данный механизм токопереноса как раз и наблюдается в нашей гетероструктуре.

Поскольку этот механизм должен преобладать при $L/L_A \gg 1$, где $L_A = [(2kT/q)\mu_n\tau/(b+1)]^{1/2}$ — амбиполярная диффузионная длина, а длина области I относительно невелика, можно сделать вывод о малой величине диффузионного смещения и соответственно о малом времени жизни носителей.

Данный результат не вызывает удивления, если принять во внимание особенности микроструктуры слоя SnO_2 : Сu. Действительно, в области высоких смещений после участка ВАХ, описываемого выражением (2), не наблюдается резкого роста тока, обусловленного заполнением основного уровня захвата и определяющего темп рекомбинации. Этот факт может свидетельствовать о вкладе нескольких центров захвата, происхождение которых связано не только с химической примесью, но также и с дефектами структуры света.

На рис. 1 напряжение U_1 , соответствующее точке пересечения омического и квадратичного участков ВАХ, может быть представлено выражением

$$U_1 = U_{1,n}(1 + bn_0/p_0)/(1 - n_0/p_0),$$

где

$$U_{1,n} = L^2 / (\mu_p \tau).$$
 (3)

До выдержки образца в газовой смеси 1%-H₂S/N₂ данное напряжение составляло $U_1 \approx 0.22$ В. После экспозиции гетероструктуры в указанной смеси и последующей выдержки на воздухе $U_1 \approx 0.5$ В.

Как уже отмечалось, после экспонирования в сероводороде характер зависимости "ток-напряжение" не изменился. При этом величина тока в области двойной инжекции стала примерно в 1.5 раза меньше, чем до экспонирования, тогда как в омической области произошло увеличение тока на 20–30%.

Указанное изменение величины тока в омической области обусловлено ростом концентрации равновесных носителей, а не повышением их подвижности, так как для нейтрализации инжектированной плазмы необходимо увеличение смещения. Данный вывод подтверждается ростом значения U_1 , который наблюдается на рис. 1.

Снижение тока двойной инжекции в квадратичной области ВАХ после воздействия сероводорода можно связать с уменьшением коэффициента инжекции дырок со стороны гетерограницы $SnO_2:Cu-p$ -Si. Этот эффект является весьма заметным, однако еще более существенная роль указанной гетерограницы выявляется при исследовании фотоэдс и фототока.

3.2. Фотоэлектрические характеристики гетероструктур

На рис. З представлены две зависимости спектральной фоточувствительности, зарегистрированные до экспозиции в сероводороде (кривая 1) и после экспозиции с дальнейшей выдержкой на воздухе (кривая 2). Указанные зависимости были сняты в режиме фотоэдс разомкнутой цепи.

Прежде всего из рис. 3 следует, что спектральная фоточувствительность исследуемых гетероструктур определяется наиболее узкозонной компонентой, т.е. *p*-Si.

Далее, в результате воздействия сероводорода абсолютная величина фотоэдс (кривая 2) выросла в 1.5 раза по сравнению со своими исходными значениями (кривая *I*). При этом максимум данной зависимости сместился в коротковолновую область на величину 0.12 эВ.

На рис. 4 представлена зависимость фототока от величины прямого и обратного смещения. Для кривых 1 и 2, которые были зарегистрированы при прямом смещении,

Рис. 3. Спектральная фоточувствительность структуры Al-*p*-Si-SnO₂: Cu-Ag (кривая *1* — до экспозиции в газовой смеси 1%-H₂S/N₂, кривая *2* — после экспозиции).

Рис. 4. Зависимость фототока от приложенного смещения (кривые *1* и *3* — до экспозиции в газовой смеси 1%-H₂S/N₂ соответственно при прямом и обратном смещении; кривая *2* — после экспозиции при прямом смещении).

соответственно до и после экспозиции в сероводороде, линейный участок $(J \propto U)$ сменяется квадратичным участком $(J \propto U^2)$ при U > 1 В. На кривой 3, снятой при обратном смещении до экспозиции в смеси 1%-H₂S/N₂, линейный участок постепенно переходит в область насыщения.

На всех кривых рост фототока на линейном участке определяется в основном изменением сопротивления области I гетероструктуры при условии, что концентрация равновесных носителей $n_0 \ge \Delta n, \Delta p$.

При дальнейшем росте смещения концентрация неравновесных световых носителей превысит величину n_0 и возникнет режим двойной инжекции световых носителей, соответствующий квадратичном участку кривой, т.е. фактически будет происходить усиление фототока. Данный режим, однако, в большей степени определяется захватом и рекомбинацией неравновесных носителей как в области I, так и в области II на гетерогранице.

При проверке влияния внешней немодулированной засветки было обнаружено падение фототока с ростом интенсивности излучения, что свидетельствует о перезарядке соответствующих уровней захвата. Полагая, что уровень меди в SnO_2 является акцепторным, можно считать область I сильно компенсированной. Поэтому при инжекции световых носителей (так же, как и для темновых носителей в рассмотренном ранее случае) наблюдается сильный захват неравновесных электронов. Эти процессы находят отражение в поведении ВАХ: квадратичный участок переходит в область насыщения.

Согласно уравнению (1), при отсутствии захвата (т.е. при постоянном τ) следует ожидать вклада второго, диффузионного члена $(2kT/q)d^2n/dx^2$ в перенос носителей, как результат накопления электронов у гетерограницы SnO₂: Cu-*p*-Si. Накопление электронов и дырок привело бы к уменьшению напряженности электрического поля и к преобладанию влияния диффузионного

Рис. 5. Кинетика изменения фототока при экспозиции гетероструктуры в газовой смеси 1%-H₂S/N₂ (область I) и при последующей выдержке на воздухе (область II).

члена. В этом случае показатель степени при U в формуле (2) должен быть больше двух. В нашем случае, благодаря захвату электронов, такого накопления не происходит. Как следствие — напряженность электрического поля, возрастающая по направлению к гетерогранице, достигает вблизи нее некоторого конечного максимального значения.

На рис. 5 представлен экспериментальный график изменения фототока для случая немодулированной внешней засветки в зависимости от времени при экспонировании гетероструктуры в газовой смеси 1%-H₂S/N₂ (область I) и последующей выдержке на воздухе (область II). При впуске сероводорода в кювету, содержащую исследуемый образец, фототок почти безынерционно падает до уровня 77% от своего исходного значения. В результате последующей выдержки образца в смеси H₂S в течение 8 мин величина фототока снижается до 34% от первоначального уровня. После выпуска газовой смеси 1%-H₂S/N₂ и при дальнейшей выдержке на воздухе наблюдается постепенный рост фототока. В итоге значения фототока при прямом смещении, измеренные до и после экспозиции в сероводороде, оказались почти одинаковыми, в том числе и в режиме двойной инжекции (см. кривые 1 и 2 на рис. 4).

Возможное объяснение влияния сероводорода на фотоэлектрические характеристики исследованных структур связано с ролью гетерограницы SnO₂: Cu-p-Si. Поскольку фотоэдс возникает благодаря наличию гетеробарьера, изменение ее величины следует связывать с изменением высоты этого барьера. Использованная технология нанесения слоев SnO2: Си неизбежно приводит к высокой концентрации крупных сквозных пор в этих слоях, позволяющих газам из окружающей атмосферы быстро проникать к гетерогранице. Обратимость влияния газов на фотоэлектрические свойства гетероструктур свидетельствует, скорее всего, не о химическом механизме эффекта, а о физической сорбции-десорбции газов, изменяющей зарядовое состояние гетерограницы. При этом может меняться высота энергетического барьера и, как следствие, величина фототока. Сдвиг кривой фотоэдс в коротковолновую область, помимо других причин, может быть вызван снижением темпа рекомбинации вблизи гетерограницы (в местах максимальной концентрации меди в слое SnO₂) при адсорбции там молекул сероводорода.

Далее, при небольших сигналах $U_{ph} \approx J_{ph}R_0$, где R_0 — сопротивление при нулевом смещении. Для случая генерации–рекомбинации последний пример определяет-ся выражением

$$R_0 A = (\tau_0/n_i) (U_{bi} N_a)^{1/2} / (2\varepsilon \varepsilon_0 q)^{1/2}, \tag{4}$$

где A — активная площадь структуры, U_{bi} — контактный потенциал, τ_0 — время жизни, n_i — собственная концентрация носителей, а остальные обозначения имеют свой обычный смысл. Поскольку вблизи гетерограницы величина τ_0 увеличивается, возрастает также и значение R_0A . В свою очередь это должно приводить к росту фотоэдс, что и происходит в эксперименте.

В связи с изложенным становится ясным отмеченное ранее совпадение зависимостей фототока от смещения (см. рис. 4), измеренных до и после экспозиции в сероводороде, поскольку данные кривые снимались при возбуждающем излучении с длиной волны 1 мкм.

4. Заключение

Таким образом, полученные результаты свидетельствуют о принципиальной возможности использования гетероструктур на основе SnO₂ для регистрации сероводорода с помощью нового физического эффекта изменения фоточувствительности гетероструктуры в атмосфере детектируемого газа. Для практических целей особенно важным является тот факт, что наблюдаемые процессы являются обратимыми и происходят уже при комнатной температуре.

Дальнейшие исследования, намечаемые в рамках данной тематики, должны дать дополнительную информацию о свойствах изучаемых гетероструктур применительно к задаче создания соответствующих систем газоанализа.

Список литературы

- [1] W. Gopel. Progr. Surf. Sci., 20, 9 (1985).
- [2] Solid State Gas Sensors, ed. by P.T. Moseley, B.C. Tofield (Bristol-Philadelphia, Hilger, 1987) p. 51.
- [3] T. Maekawa, J. Tamaki, N. Miura, N. Jamazoe. Chem. Lett., 4, 575 (1991).
- [4] J. Tamaki, T. Maekawa, N. Miura, N. Jamazoe. Sens. Actuators, 9, 197 (1992).
- [5] А.М. Гаськов, Л.И. Рябова, М. Лабо, Ж. Делабугриз, М.Н. Румянцева, Т.А. Кузнецова, М.Н. Булова. Неорг. химия, 41, 989 (1996).
- [6] М. Ламперт, П. Марк. Инжекционные токи в твердых телах (М., Мир, 1973) гл. 13.
- [7] Б.А. Акимов, А.В. Албул, А.М. Гаськов, В.Ю. Ильин, М. Лабо, М.Н. Румянцева, Л.И. Рябова. ФТП, **31** (4), 400 (1997).

Редактор Л.В. Беляков

Influence of hydrogen sulphide upon electrical and photoelectrical properties of AI-*p*-Si-SnO₂: Cu-Ag heterostructure

S.V. Slobodchikov, Ye.V. Russu, E.V. Ivanov, Yu.G. Malinin, Kh.M. Salikhov

Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract Current–voltage characteristics, spectral photoresponse and dependence of photocurrent vs bias have been studied for Al–*p*-Si–SnO₂:Cu–Ag heterostructure. The influence of 1%-H₂S/N₂ gas mixture on these properties is also the matter on research. It is found that current transport $J \propto U^2$ takes place for dark and light charge carriers. Exposure to hydrogen sulphide results in shift of photovoltage spectral curve to the short-wave region. In hydrogen sulphide atmosphere photocurrent decrease is distinguished by a long decay time.