Исследование глубоких уровней в CdHgTe методом туннельного тока фотодиодов

© В.И. Туринов

Научно-производственное предприятие "Исток", 141190 Фрязино, Россия

(Получена 21 августа 2003 г. Принята к печати 17 октября 2003 г.)

На фотодиодах $Cd_x Hg_{1-x}$ Те при исследовании туннельного тока J_t через уровни в запрещенной зоне определены их энергии залегания $E_t - E_v$ и концентрация N_t . Практически для всех фотодиодов характерно наличие мелких акцепторных уровней с $E_t - E_v = 8-12$ мэВ, создаваемых однозарядными вакансиями V_{Hg}^+ . В ряде фотодиодов были отмечены глубокие уровни $E_t = E_v + 0.26E_g$, проявляющие себя как рекомбинационные. Были обнаружены еще и более глубокие уровни $E_t = E_v + 0.6E_g$, которые могут вести себя и как рекомбинационные, и как глубокие ловушки с малым сечением захвата дырок.

В полупроводниковых твердых растворах Cd_xHg_{1-x}Te мелкие акцепторные уровни вблизи валентной зоны E_v создают однозарядные вакансии V_{Hg}^+ [1]. В работах разных исследователей экспериментально определенные значения глубины залегания таких мелких акцепторных уровней V_{Hg}^+ колеблются от $E_t - E_v = (12.5 \pm 2) \text{ мэВ}$ для состава с x = 0.215 до $E_t - E_v = 9.2 - 10.8$ мэВ для x = 0.225 [2]. Есть также сообщения об уровнях с $E_t - E_v = 15$ мэВ [1] и 5 мэВ [3]. Уровни с такой энергией могут создавать и примесные атомы [4]. Более интересными с точки зрения влияния положения уровней на электрофизические параметры фотодиодов представляются глубокие уровни, действующие в основном как рекомбинационные. Считается, что уровни с $E_t - E_v \approx 60$ мэВ (ширина запрещенной зоны $E_g \approx 100$ мэВ, температура T = 78 K) создают двухзарядные вакансии ртути $V_{\rm Hg}^{++}$ [1]. В работе [5] были систематизированы результаты исследования образцов Cd_xHg_{1-x} Те методом DLTS (deep level transient spectroscopy) и получены зависимости $E_t - E_v$ от состава (x) нелегированного Cd_xHg_{1-x} Те в виде $E_t = E_v + 0.4E_g$ и $E_t = E_v + 0.75E_g$. Центрами с $E_t = E_v + 0.4E_g$ и $E_v + 0.75E_g$, по предлагаемой модели [6], могут быть межузельные атомы Hg, Si, C, а также Cl в узлах Hg или антиструктурный дефект — Те в подрешетке металла. По данным, полученным методом DLTS, работы [7] и других сообщений этих же авторов в образцах Cd_xHg_{1-x} Te с $E_g = 96$ мэВ донорный уровень имеет энергию ионизации $E_t - E_v = 43$ мэВ, акцепторный уровень — 35 мэВ [7–11], в Cd_xHg_{1-x}Te с x = 0.219 есть уровни с $E_t - E_v = 46$ и 52 мэВ [8].

В фотодиодах на узкозонном Cd_xHg_{1-x} Те уже при относительно небольших обратных смещениях наблюдается туннельный ток зона-зона I_t [9], туннельный ток через "примесные" уровни J_t [10] и туннельный ток по поверхности [11]. Последний обычно стимулируют под специальным металлическим электродом, нанесенным на диэлектрический слой над областью пространственного заряда (ОПЗ) перехода, выходящей на поверхность. В нашей статье [12] были представлены результаты предварительных исследований дифференциального сопротивления R_d на ряде фотодиодов, которые

трактовались в рамках модели одного туннельного тока I_t. В дальнейшем, при более детальном исследовании, было обнаружено, что есть переходный диапазон смещений U, в котором вольт-амперные характеристики (ВАХ) имеют иные, незначительно отличающиеся от свойственных току I_t наклоны, где действуют токи J_t. Зависимости $J_t(U)$ для туннельного тока через уровни (в Cd_xHg_{1-x} Те это, как правило, уровни собственных точечных дефектов) можно использовать для определения глубины залегания таких уровней, что и было предпринято в данной работе. Исследования были выполнены на фотодиодах, изготовленных на основе образцов p-Cd_xHg_{1-x}Te с параметрами, которые для T = 78 K приведены в таблице. Базовую *n*⁺-область создавали легированием ионами Zn⁺⁺ с энергией E = 120 кэВ и дозой 1 · 10¹⁵ см⁻². По оценкам глубина залегания $n^+ - p$ -переходов составляла $\sim 0.5 - 0.8$ мкм. В качестве маски и для защиты $n^+ - p$ -переходов использовали пленку ZnS. Омический контакт к n⁺-области создавали напылением индия, а к р-области — электрическим осаждением золота. Образцы Cd_rHg_{1-r}Te с одинаковой концентрацией дырок *р* (например, А1 и А2 в таблице) были получены из одного и того же исходного образца (А) *п*-типа проводимости при разделении его на образцы меньших размеров и последующего инвертирующего проводимость в *p*-тип отжига этих образцов в одном и том же температурном режиме, как изложено в нашей работе [13]. В технологическом процессе изготовления n^+ -*p*-переходов не имелось возможности проследить, из какого конкретно образца (например, А1 или А2) были изготовлены фотодиоды (2, 4, 5 и 7), поэтому в таблице они объединены в одну группу.

Выражение для туннельного тока через примесные уровни имеет следующий вид [10]:

$$J_{t} = qN_{t}'\left(\frac{\pi^{2}}{\hbar^{3}}\right)m_{n}^{*}W_{t}^{2}\exp\left[-\frac{4(2m_{n}^{*})^{1/2}}{3\hbar q\mathscr{E}_{m}}(E_{g}-E_{t})^{3/2}\right]$$
$$\times \int_{0}^{\alpha}\left[1-\exp\left(-\frac{E}{\bar{E}_{t}}\right)\right]dE,$$
(1)

где E — энергия туннелирующего электрона, измеренная от края валентной зоны E_v на n^+ -стороне перехода;

Образец $Cd_xHg_{1-x}Te$ (p при 78 K)	Номер фотодиода	$\lambda_{co},$ MKM	$R_{d \max}, \kappa O M / - U, M B$	$p_p,$ 10^{16} cm^{-3}	$C, \pi \Phi$ (U = 0)	<i>U_{bi}</i> , мВ	$E_t - E_v,$ мэВ	<i>N</i> ['] _t , 10 ¹⁵ см ⁻³
A1 (2	10.0	5.6/405	1.3	171.6	47.3	38	0.18
A2	4	9.9	37/300	0.8	120.5	42.5	32	0.11
$(1.1 \cdot 10^{15} \mathrm{cm}^{-3})$	5	9.8	55/135	0.6	132.9	35.6	8	0.37
Č (7	—	18.4/50	0.25	91.7	27.8	12	0.4
B3 (9	_	35/135	0.3	73.5	43.2	40	0.26
B4)	11	9.8	23/150	0.22	—	25.9	72	19
$(1.5 \cdot 10^{16} \mathrm{cm}^{-3})$	12	10.1	1200/160	1.2	118.2	60.2	36	0.18
l	14	9.9	32/126	0.11	63.7	29.4	76	9.0
C1 (3	10.1	3.6/130	0.4	151.9	24.8	8/32	0.036/0.046
$(1 \cdot 10^{16} \mathrm{cm}^{-3})$	18	10.8	8.7/90	1.5	217.3	32.6	36	0.22
	21	9.94	16.2/68	3.5	237	42.9	38	5.1
D1 (10	11.6	12/65	1.0	_	_	8	0.5
D2	13	11.48	23.5/48	_	_	_	36	0.46
$(1.8 \cdot 10^{16} \mathrm{cm}^{-3})$	15	11.29	17.6/49	_	_	_	8	0.24
	16	11.28	27/69	_	_	_	36	0.19
l	17	—	16.2/50	—	—	_	28	0.9
G1 (8	—	15/47	1.1	235	26.3	22	0.077
$(2.8 \cdot 10^{16} \mathrm{cm}^{-3})$	19	11.48	20.6 / 50	1.0	212.3	27.1	8/58	0.2/0.56
	20	11.8	15/47	0.37	147.9	24.1	8/42	0.35/0.35

Параметры фотодиодов на Cd_xHg_{1-x}Te

Примечание. Диаметр $n^+ - p$ -переходов по фотошаблону 300 мкм.

q — заряд электрона; \hbar — приведенная постоянная Планка; m_n^* — эффективная масса электрона в зоне проводимости; матричный элемент перехода из валентной зоны E_v на примесный уровень $E_t - E_v$ составляет $W_t^2 = 1.2 \cdot 10^{-23} \, \mathrm{sB}^2 \cdot \mathrm{см}^3 \, [14]; \, \mathscr{E}_m = q N_a W / \varepsilon_0 \varepsilon_s \, - \mathrm{мак-}$ симальное значение электрического поля резкого перехода, в данном случае $n^+ - p$ -перехода, зависит только от параметров N_a (концентрация акцепторов в слабо легированной *р*-области) и W (ширина ОПЗ); ε_0 и ε_s — диэлектрические проницаемости вакуума и полупроводника соответственно; Eg — ширина запрещенной зоны полупроводника; $\alpha = \xi_p + \xi_n - qU - E_t - E_g$, где ξ_p и ξ_n уровни Ферми в *p*- и *n*⁺-области соответственно, *U* напряжение смещения, прикладываемое к переходу; $N'_t = N_t / \{1 + (1/2) \exp[(-E_g + E_t - \xi_p)/k_0T]\}$ — эффективная плотность занятых электронами уровней, а N_t концентрация уровней; $\bar{E}_t = \hbar F_t / \{ [2m_n^* (E_g - E_t)]^{1/2} \},$ $F_t = q \mathscr{E}$ — сила электрического поля \mathscr{E} , действующая на электрон, находящийся на уровне $E_t - E_v$ в запрещенной зоне в ОПЗ перехода. Интеграл в соотношении (1) порядка единицы, и его можно не рассчитывать.

Подставляя в (1) $m_n^*/m_0 = 0.075E_g[\Im B]$ [15] и $\mathscr{E}_m = (2qN_aU_t/\varepsilon_0\varepsilon_s)^{1/2}, U_t = U_{bi} + U$, где U_{bi} — контактный потенциал, получим

$$J_t = 8.9 \cdot 10^{-25} N_t' \left[E_g^{3/2} / (E_g - E_t)^{3/2} \right]$$
$$\times \exp\left[-4.3 \cdot 10^{-10} E_g^{1/2} (E_g - E_t)^{3/2} / N_a^{1/2} U_t^{1/2} \right] \quad (2)$$

(величина J_t измеряется в A/cm^2).

В соотношении (2) неизвестными являются два параметра, N'_t и $E_t - E_v$, значения которых можно найти путем их варьирования и достижения согласия теоретической (2) с экспериментальной ВАХ фотодиодов в диапазоне смещений U, где действует туннельный ток через "примесные" уровни. Значения $N_a = p_p$ и U_{bi} были определены из вольт-фарадных (C-U) характеристик $n^+ - p$ -переходов. Значения E_g при 78 К получены по спектральным характеристикам фоточувствительности как E_g [эВ] = $1.24/\lambda_{co}$ [мкм], где λ_{co} — граничная длина волны спектральной характеристики фоточувствительности (см. таблицу).

На обратных ветвях экспериментальных ВАХ I(U), построенных в двойном логарифмическом масштабе, сложно разделить токи I_t и J_t , так как они имеют незначительно отличающиеся наклоны. Поэтому на рис. 1–5 обратные ВАХ построены в полулогарифмическом масштабе для дипапзонов U, в которых доминируют туннельные токи J_t . При $E_t - E_v = 0$ зависимости от напряжения J_t совпадают с таковыми для I_t . В таблице приведены значения $E_t - E_v$ и N'_t , определенные по этим ВАХ. Соответствующие значения $E_t - E_v$ и N'_t для случаев, когда были зарегистрированы два уровня, приведены в виде дроби.

В твердых растворах Cd_xHg_{1-x} Te, согласно работе [16], валентные зоны E_{vi} образованы из *p*-уровней атомов Те, а зона проводимости E_c из *s*-уровней атомов металла, Hg и Cd. В зонной модели Кейна [17], хорошо описывающей такие узкозонные полупроводниковые

Рис. 1. Вольт-амперные характеристики фотодиодов на $Cd_x Hg_{1-x}$ Те с x = 0.222: туннельные составляющие J_t . Образцы A1 и A2. 2, 4, 5, 7 — номера фотодиодов.

Рис. 2. Вольт-амперные характеристики фотодиодов на Cd_xHg_{1-x} Те с x = 0.217: туннельные составляющие J_t . Образцы ВЗ и В4. 9, 11, 12, 14 — номера фотодиодов.

Рис. 3. Вольт-амперные характеристики фотодиодов на Cd_xHg_{1-x} Те с x = 0.215: туннельные составляющие J_t . Образец С1. 3, 3', 18, 21 — номера фотодиодов.

материалы, как InSb и Cd_xHg_{1-x} Te, основанной на (\mathbf{kp}) -приближении теории возмущений, волновые функции валентных зон E_{vi} и зоны проводимости E_c образованы из смеси *p*- и *s*-функций. При волновом векторе электрона $\mathbf{k} = \mathbf{0}$ (в центре зоны Бриллюэна) волновые

Физика и техника полупроводников, 2004, том 38, вып. 9

функции E_c обладают только симметрией s-функций, т. е. вблизи $\mathbf{k} = \mathbf{0}$ зона E_c состоит только из *s*-уровней Hg и Cd. Волновые функции зон E_{vi} при $\mathbf{k} = 0$ обладают только симметрией *p*-функций, а зона E_{v1} (зона тяжелых дырок, определяющая в основном все электрофизические свойства материала р-типа проводимости) имеет симметрию *p*-функций и при $\mathbf{k} \neq 0$, т. е. состоит в чистом виде из р-уровней атомов Те. При образовании электрически активных собственных точечных дефектов, например V_{Hg} или V_{Cd}, атомы Hg и Cd, покидая свои места в решетке, "уносят" с собой *s*-электроны, и нескомпенсированные соседние атомы Те захватывают электроны для восстановления электрической нейтральности (от зон E_{vi} отщепляются *p*-уровни атомов Te, а захваченный электрон как бы размазан по соседним атомам Те). Иначе говоря, вакансии V_{Hg} и V_{Cd} проявляют себя как акцепторы. Соответствующие им уровни, отщепляясь от "своих" зон, связаны с ними, и энергетический зазор ΔE относительно "своей" зоны изменяется при изменении, например, температуры или состава (x). По зависимости

Рис. 4. Вольт-амперные характеристики фотодиодов на Cd_xHg_{1-x} Те с x = 0.219: туннельные составляющие J_t . Образец G1. 8, 19, 19', 20, 20' — номера фотодиодов.

Рис. 5. Вольт-амперные характеристики фотодиодов на Cd_xHg_{1-x} Те с x = 0.214: туннельные составляющие J_t . Образцы D1 и D2. 10, 13, 15, 16, 17 — номера фотодиодов.

 $\Delta E(x)$ можно определить, с какой зоной связан тот или иной уровень. Это можно видеть на энергетической диаграмме (рис. 6). Уровни с $E_t - E_v = 8 \text{ мэВ}$ связаны с E_v (*p*-уровни Те, вакансии V_{Hg}^+). На диаграмме среди уровней с энергией ионизации ~ 36 мэВ просматривается связь некоторых из них с зоной Е_с в виде зависимости $E_t \approx E_v + 0.26E_g$ и есть уровни, для которых $E_t - E_v$ на зависит от состава. Таким образом, в этой группе есть уровни, не имеющие отношения к центрам, указанным в работах [1,6]. Возможно, это вакансии V_{Te}. Считается, что V_{Te} тоже являются рекомбинационными центрами [18,19]. Наконец, глубокие уровни с $E_t - E_v = 58$, 72 и 76 мэВ связаны с зоной E_c и укладываются на зависимость $E_t = E_v + 0.6E_g$, близкую к зависимости $E_t = E_v + 0.75E_g$ [5]. Следует отметить, что уровни с энергией $E_t - E_v = 79$ мэВ, обнаруженные в работе [20], могут быть связаны, по мнению авторов, и с поверхностными состояниями. В наших исследованиях такое возможно, но только в фотодиоде 11, поскольку в обратной ветви ВАХ этого фотодиода (см. [21], рис. 2) в диапазоне средних напряжений, $U \approx -(50-200)$ мВ, доминировал поверхностный диффузионный ток в канале I_{ds} [22]. Однако это противоречит данным [21] (рис. 4): не наблюдалось характерного расплывания перехода по поверхности при изменении U (примером служат спектральные характеристики и зависимости сигнала от координаты чувствительной площадки фотодиода 18 [21]). Вид спектральной характеристики фотодиода 19 в коротковолновой области (см. [21], рис. 5), небольшое расплывание перехода при обратном смещении (см. [21], рис. 4) и ВАХ (см. [21], рис. 3) указывают, что роль поверхности в этом фотодиоде не выше, чем в других. Большая емкость C(U = 0) фотодиода 19 по сравнению, например, с фотодиодом 14, имеющим уровень такой же глубины залегания $E_t \approx E_v + 0.6E_g$, обусловлена различием их по $\lambda_{co}(E_g)$ и по $N_a = p_p$ (таблица). Это различие в N_a при одинаковой концентрации вводимой в *n*⁺-слой легирующей донорной примеси *N_d* приводит при сравнимых U_{bi} к меньшей ширине ОПЗ перехода $W = (2\varepsilon_s \varepsilon_0 U_{bi}/qN_a)^{1/2}$ в фотодиоде 19 примерно в

Рис. 6. Энергетическая диаграмма электрически активных уровней в Cd_xHg_{1-x} Te. Образцы Cd_xHg_{1-x} Te: *1*, I' — A1; 2, 2' — A2; 3, 3' — C1; 4 — C2; 5 — B1. (I-5) — до отжига; I'-3' — после отжига. Остальные точки — данные для фотодиодов (таблица).

Рис. 7. Зависимость $R_{d \max}$ фотодиодов на Cd_xHg_{1-x} Те от глубины залегания рекомбинационных уровней. Данные для фотодиодов из таблицы.

3 раза по сравнению с фотодиодом 14 и различию во столько же раз емкости. Эти данные противоречат предположению, что уровни $E_t \approx E_v + 0.6E_g$ связаны с поверхностными состояниями. Прямые исследования структур ZnS-CdHgTe также не подтвердили наличия локальных уровней с такой энергией на границе раздела [23]. Следовательно, эти уровни расположены в объеме самого материала CdHgTe и связаны либо с примесью, либо с собственными точечными дефектами. Для установления их природы необходимы дальнейшие исследования с помощью, например, методов ядерного магнитного резонанса или рентгеноструктурных методов. На диаграмме рис. 6 показаны также уровни, определенные из температурных зависимостей удельного сопротивления $ho_0(T)$ образцов до отжига и после отжига (табл. 1 в нашей работе [13]).

На рис. 7 показана зависимость $R_{d \max}$ от положения уровней $E_t - E_v$ ($R_{d \max}$ — максимальное дифференциальное сопротивление в обратной ветви ВАХ фотодиодов; в таблице указаны напряжения, при которых R_d достигает максимальной величины). Пик R_{d max} образуется на "изломе" двух сменяющих друг друга доминирующих токов, I_{ds} или I_s (поверхностный генерационнорекомбинационный ток в коротком поверхностном канале [24]) и тока J_t (см. [21], рис. 1–3). Ток J_t непосредственно "течет" через уровни $E_t - E_v$ (2). Ток I_{ds} также зависит от энергии рекомбинационного уровня $E_t - E_v$, но косвенно, через время жизни электронов τ_n в приповерхностном слое порядка диффузионной длины электронов. Зависимость тока I_s от энергии $E_t - E_v$ также косвенная, через скорость поверхностной рекомбинации S, поскольку эффективная длина диффузионного смещения носителей Leff в приповерхностном слое зависит как от *S*, так и от τ_n в объеме полупроводника:

$$\frac{1}{L_{\text{eff}}^2} = \frac{1}{L_{\text{vol}}^2} + \frac{2S}{dD}, \quad L_{\text{vol}}^2 = D\tau_n.$$

где *D* — коэффициент диффузии носителей, *d* — толщина образца.

На первый взгляд, из рис. 7 можно сделать вывод, что уровни с $E_t - E_v \approx 0.4E_g$ не являются рекомбинационными, а рекомбинационные расположены выше, на что указывает резкое падение $R_{d \max}$ при $E_t - E_v > 40$ мэВ. Для фотодиодов с большими λ_{co} эта зависимость не так явно выражена, а сам пик $R_{d \max}$, предположительно, смещается к меньшим значениям $E_t - E_v$ (штриховая кривая на рис. 7).

Для выяснения этого вопроса были выполнены следующие эксперименты и вычисления. Из прямой ветви ВАХ были определены длины диффузионного смещения носителей заряда L_n , по которым была проведена оценка времени жизни электронов τ_n в *p*-базе. Так, например, для фотодиода 5, изготовленного на образце В3, такая оценка дала $\tau_n = 2.6 \cdot 10^{-8}$ с. При измерении с использованием ультракоротких импульсов лазера на СО2 для этого же фотодиода 5 было получено $\tau_n = 5 \cdot 10^{-8}$ с, т.е. в 2 раза выше. На исходном образце ВЗ измеренное значение времени жизни дырок после термоконверсии в p-тип составляло $au_p = 1 \cdot 10^{-7}$ с, т.е. в данном образце *p*-типа $\tau_n < \tau_p$. В этом случае время рекомбинации Шокли–Рида $au_{S-R} = (\mu_n au_n + \mu_p au_p)/(\mu_n + \mu_p)$ определяют электроны. При $T \approx 78 \,\mathrm{K}$ в $\mathrm{Cd}_x\mathrm{Hg}_{1-x}\mathrm{Te}$ с $x \approx 0.2$ доминируют два механизма рекомбинации, Шокли-Рида и Оже [25] с временами τ_{S-R} и τ_A соответственно, и $au_n = au_{S-R} au_A / (au_{S-R} + au_A)$. Для $p(78 \text{ K}) \approx 2 \cdot 10^{16} \text{ см}^{-3}$ $\tau_A \approx 7 \cdot 10^{-8} \,\mathrm{c}$ [25]. Отсюда (принимая $\tau_n = 5 \cdot 10^{-8} \,\mathrm{c}$) получаем $\tau_{S-R} \approx 1.8 \cdot 10^{-7}$ с, т.е. время жизни фотоносителей τ_n в *p*-базе $n^+ - p$ -переходов и все параметры фотодиодов определяются в основном оже-рекомбинацией. Вклад рекомбинации Шокли–Рида в τ_n примерно в 2 раза меньше. Поэтому зависимость параметров фотодиодов, а из них наиболее чувствительного R_0A (удельного дифференциального сопротивления при U = 0 B), от плотности рекомбинационных центров N_t и энергии уровней $E_t - E_v$ имеет слабо выраженный характер (рис. 8). С другой стороны, R_{d max}, определяемое на стыке двух механизмов токов, сильнее зависит от концентрации свободных носителей заряда p_p (фотодиоды 9, 11, 12 и 14 — см. таблицу и рис. 7), что характерно для ожерекомбинации.

Важным энергетическим уровнем для рекомбинации Шокли-Рида является демаркационный уровень Е_D, связанный с неосновными носителями. Демаркационный уровень расположен между уровнем захвата неосновных носителей и уровнем рекомбинационных центров с концентрацией Nr и определяет вероятность захвата электрона центром, занятым дыркой, равную вероятности возвращения дырки назад в валентную зону под действием термической энергии. Для полупроводника, находящегося в равновесном состоянии, уровень Ферми, одинаковый для электронов и дырок, является демаркационным уровнем. При нарушении равновесия, например смещением U, ξ_p и E_D уже не совпадают. Все уровни, лежащие между ξ_p и E_D , являются в основном рекомбинационными центрами, так же как уровни между ξ_p и E_c , E_D и E_v являются главным образом ловушками.

Рис. 8. Зависимость R_0A фотодиодов на Cd_xHg_{1-x} Те и вероятности рекомбинации G от глубины залегания уровней $E_t - E_v$.

Из уравнений переноса [26] получаем выражение для энергии демаркационного уровня

$$E_{D} = E_{F} + \frac{3}{2} kT \ln\left(\frac{m_{p}^{*}}{m_{n}^{*}}\right) + kT \ln\left(\frac{\gamma_{p}}{\gamma_{n}}\right), \quad (3)$$
$$\gamma_{n} = \sigma_{n} \langle V_{n} \rangle, \quad \gamma_{p} = \sigma_{p} \langle V_{p} \rangle,$$
$$\langle V_{n} \rangle = \left(\frac{8kT}{\pi m_{n}^{*}}\right)^{1/2}, \quad \langle V_{p} \rangle = \left(\frac{8kT}{\pi m_{p}^{*}}\right)^{1/2},$$

где γ_n и γ_p определяются как вероятности захвата электрона и дырки, имеющих средние тепловые скорости $\langle V_n \rangle$ и $\langle V_p \rangle$, из зоны проводимости (валентной зоны) на свободный (занятый) центр с энергией E_r ; σ_n и σ_p — эффективные сечения захвата электрона и дырки соответственно.

Из соотношения (3) видно, что энергия E_D через слагаемое с рекомбинационными коэффициентами сильно зависит от типа центров. В нелегированном Cd_xHg_{1-x} Те для уровня $E_t = E_v + 0.4E_g$ $\sigma_n \approx 10^{-15} - 10^{-16}$ см², $\sigma_p \approx 10^{-17} - 10^{-18}$ см², а уровень $E_t = E_v + 0.75E_g$ имеет $\sigma_n \approx 10^{-16}$ см², $\sigma_p \approx 10^{-17} - 10^{-20}$ см² [5]. Используем эти параметры рекомбинационных центров для оценки вероятности рекомбинации на уровнях $E_t = E_v + 0.26E_g$ и $E_t = E_v + 0.6E_g$. При этом примем $m_p^* = 0.55m_o$, а эффективную массу электронов в зависимости от E_g , как обычно, в виде $m_n^* = 0.075E_gm_0$ (здесь E_g в эВ) [15].

Вероятность рекомбинации на уровне E_t оценим как $G = E_D/E_t$ при $E_t > E_D$ и $G = E_t/E_D$ при $E_t < E_D$. Для фотодиода 8 с энергией $E_t - E_v = 22$ мэВ даже при наибольшем расхождении σ_n и σ_p в 10³ раз $E_D = 26$ мэВ, т.е. этот уровень не попадает в диапазон между $\xi_p = 44$ мэВ и E_D , и его следует соотнести с ловушкой. Все остальные уровни с $E_t = E_v + 0.26E_g$ попадают в диапзон между ξ_p и E_D , и их можно считать рекомбинационными. Большой разброс значений σ_n и σ_p , используемых нами в расчетах для уровней $E_t = E_v + 0.6E_g$ показывает, что их можно отнести к рекомбинационным центрам при минимальном расхождении по σ_n и σ_p : например, при $\sigma_n/\sigma_p = 10$ для фотодиода 14 $\xi_p = 66$ мэВ и

 $E_D = 78$ мэВ при $E_t - E_v = 76$ мэВ. Если же в расчетах принять $\sigma_n/\sigma_p = 10^4$ (штриховые кривые на рис. 8, фотодиоды 11, 14 и 19), то тогда они выступают уже как ловушки, когда для этого же фотодиода 14', становится $E_D = 31$ мэВ.

Из зависимостей рис. 8 следует удовлетворительная корреляция экспериментальных R_0A , ограниченных генерационно-рекомбинационными процессами, и G от $E_t - E_v$. Для фотодиода 11 заниженное значение R_0A (рис. 8) обусловлено повышенной величиной тока I_{ds} (см. [21], рис. 2).

Итак, на фотодиодах Cd_xHg_{1-x}Te при исследовании туннельного тока J_t через уровни в запрещенной зоне были определены их энергии $E_t - E_v$ и концентрация N'_t . Практически во всех фотодиодах имелись мелкие акцепторные уровни с $E_t - E_v = 8 - 12 \text{ мэВ}$, создаваемые однозарядными вакансиями V_{Hg} [1]. Эти уровни являются ловушками, они не участвуют в процессах рекомбинации, но через них проходит туннельный ток J_t при больших напряжениях смещения. В ряде фотодиодов были отмечены также глубокие уровни $E_t = E_v + 0.26E_g$, ведущие себя как рекомбинационные. Возможная природа этих уровней была высказана в работе [6]. При этих измерениях были обнаружены еще и более глубокие уровни $E_t = E_v + 0.6E_g$ с концентрацией N'_t , намного превышающей концентрацию других уровней. Эти уровни функционально могут вести себя и как рекомбинационные, и как глубокие ловушки с маленьким сечением захвата дырок σ_p . Отмеченный необычный "всплеск" на зависимости $R_{d \max}$ фотодиодов от $E_t - E_v$ не связан с рекомбинацией через уровни, а обусловлен сменой механизмов тока.

Список литературы

- [1] M.A. Kinch. J. Vac. Sci. Technol., 21, 215 (1982).
- [2] E. Finkman, Y. Nemirovsky. J. Appl. Phys., **59**, 1205 (1986).
- [3] B. Schlicht, A. Alpsancar, G. Nimtz, N.F. Schroeder. Proc. 4th Int. Conf. Physics of Narrow-Gap Semiconductors (Springer, Berlin, 1981) p. 439.
- [4] R. Faston, Y. Nemirovsky. J. Vac. Sci. Technol. A, 8, 1245 (1990).
- [5] C.E. Jones, V. Nair, J. Lingquist, D.L. Polla. J. Vac. Sci. Technol., 21, 187 (1982).
- [6] C.E. Jones, K. James, J. Merz, R. Braunstein, M. Burd, M. Eetemadi, S. Hutton, J. Drumheller. J. Vac. Sci. Technol. A, 3, 131 (1985).
- [7] D.L. Polla, C.E. Jones. J. Appl. Phys., 52, 5118 (1981).
- [8] D.L. Polla, C.E. Jones. J. Appl. Phys., 51, 6233 (1980).
- [9] P.K. Chakraborty. Sol. St. Electron., **34**, 665 (1991).
- [10] J.Y. Wong. IEEE Trans. Electron. Dev., ED-27, 48 (1980).
- [11] W.W. Anderson, H.J. Hoffman. J. Vac. Sci. Technol. A, 1, 1730 (1983).
- [12] В.И. Туринов. Электрон. техн., сер. 11 Лазерная техника и оптоэлектрон., 4, 61 (1989).
- [13] П.В. Бирюлин, В.И. Кошелева, В.И. Туринов. ФТП, **38**, в печати (2004).
- [14] C.T. Sah. Phys. Rev., **123**, 1594 (1961).

- [15] M.A. Kinch, D.D. Buss. J. Phys. Chem. Sol. Suppl 1, 32, 461 (1971).
- [16] H. Overhof. Phys. St. Sol. B, 43, 315 (1971).
- [17] E.O. Kane. J. Phys. Chem. Sol., 1, 249 (1957).
- [18] M.Y. Pines, O.M. Stafsudd. Infr. Phys., 20, 73 (1979).
- [19] M.A. Berding, A. Sher, A.-B. Chen. J. Vac. Sci. Technol. A, 5, 3009 (1987).
- [20] V.A. Cotton, J.A. Wilson, C.E. Jones. J. Appl. Phys., 58, 2208 (1985).
- [21] П.В. Бирюлин, В.И. Туринов, Е.Б. Якимов. ФТП, **38**, 890 (2004).
- [22] M. Cutler, H.M. Bath. Proc. IRE, 45, 39 (1957).
- [23] П.В. Бирюлин, С.А. Дудко, С.А. Коновалов, Ю.А. Пелевин, В.И. Туринов. ФТП, 37, 1431 (2003).
- [24] S.P. Tobin, S. Iwasa, T. Tredwell. IEEE Trans. Electron. Dev., ED-27, 43 (1980).
- [25] T.N. Casselman. J. Appl. Phys., 52, 848 (1981).
- [26] M.A. Kinch, M.J. Brau, A. Simmons. J. Appl. Phys., 44, 1649 (1973).

Редактор Л.В. Шаронова

Investigation of deep levels in CdHgTe by the method of tunneling current in photodiodes

V.I. Turinov

State Research & Production Corporation "Istok", 141190 Fryazino, Russia