Дрейфовая подвижность носителей заряда в пористом карбиде кремния

© Л.П. Казакова[¶], М.Г. Мынбаева, К.Д. Мынбаев

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 22 декабря 2003 г. Принята к печати 26 января 2004 г.)

Методом измерения времени пролета определены значения дрейфовой подвижности электронов и дырок в пористом карбиде кремния, полученном поверхностной анодизацией пластин 4*H*-SiC *n*-типа проводимости. Подвижности электронов и дырок при 300 K в электрическом поле 10^4 B/cм составили $\mu_e = 6 \cdot 10^{-3}$ и $\mu_h = 3 \cdot 10^{-3}$ см²/B · с соответственно. Низкие значения подвижности объясняются захватом носителей на локализованные состояния.

Пористый SiC (*PSC*) в настоящее время рассматривается как материал, способный расширить рамки применения карбида кремния в микроэлектронике. Имеются сообщения о том, что *PSC* обладает высоким удельным сопротивлением [1,2] и малой эффективной концентрацией носителей заряда [3], в то же время транспорт носителей заряда в *PSC* практически не изучался. Вопрос о механизмах переноса в *PSC* становится, однако, весьма актуальным, в том числе и в связи с перспективами применения этого материала в приборных структурах [4].

В настоящей работе сообщается о результатах исследования в *PSC* одной из основных характеристик переноса — величины дрейфовой подвижности носителей заряда μ . Исследования были проведены методом измерения времени пролета носителей через образец [5]. Данный метод позволяет определить подвижность в материалах, в которых интерпретация результатов измерений ее величины традиционными методами (например, при помощи эффекта Холла) затруднена в силу того, что при низких значениях μ не выполняется условие применимости кинетического уравнения Больцмана [6]. Ранее этот метод был успешно применен для исследования полупроводников с неупорядоченной структурой [7], а в последние годы — пористого кремния [8–10].

Слои *PSC* были созданы методом поверхностной анодизации пластин 4*H*-SiC *n*-типа проводимости в водном растворе плавиковой кислоты по методике, описанной в работе [4]. Плотность тока анодизации составляла 8 мА/см². Часть каждой пластины во время анодизации была закрыта маской. По данным сканирующей электронной микроскопии, полученные слои *PSC* имели толщину 5 мкм. Образцы для измерений времени пролета имели структуру типа "сэндвич". Верхним электродом служила напыленная в вакууме на поверхность *PSC* полупрозрачная пленка алюминия площадью 9 мм². В качестве нижнего электрода использовалась неанодизированная часть пластины SiC.

Носители заряда инжектировались в образец *PSC* вблизи верхнего электрода импульсом света с длиной

волны 0.337 мкм, получаемым от лазера ИЛГИ-503. Длительность импульса составляла 8 нс. К образцу прикладывалось импульсное напряжение длительностью 1 мс при наличии времени задержки ~ 100 мкс между моментами подачи напряжения и импульса излучения. Постоянная измерительной цепи была значительно меньше времени пролета. Измерения проводились при комнатной температуре в режиме сильной инжекции, когда влиянием электрического поля дрейфующего пакета носителей заряда пренебречь было нельзя. В этих условиях в образце протекает ток, ограниченный пространственным зарядом (ТОПЗ) [11].

Рис. 1. Осциллограммы переходного фототока I(t), соответствующего дрейфу электронов (a) и дырок (b) в слое *PSC* толщиной 5 мкм. Напряжение U, V: a) 1 - 5, 2 - 10; b) 1 - 4, 2 - 6. Масштаб по оси t, мкс/дел.: a) 1 - 5, 2 - 2; b) 1, 2 - 10. Масштаб по оси I, мкА/дел.: a) 1 - 10, 2 - 65; b) 1, 2 - 5. Стрелками указано время t_m .

[¶] E-mail: Kazakova@mail.ioffe.ru

Рис. 2. Зависимость дрейфовой подвижности электронов (1) и дырок (2) от напряжения в слое *PSC* толщиной 5 мкм.

На рис. 1 приведены осциллограммы фототока, наблюдавшиеся при дрейфе электронов (рис. 1, a) и дырок (рис. 1, b) в слое *PSC*. Из рисунка видно, что форма полученных осциллограмм переходного фототока I(t) является типичной для ТОПЗ. Зависимость I(t)характеризовалась начальным I₀ и максимальным I_m фототоками. О достижении режима ТОПЗ свидетельствовали экспериментально наблюдаемые квадратичная зависимость величины тока от напряжения и ее независимость от величины инжектирующего излучения. Время t_m , соответствующее максимуму фототока, изменялось обратно пропорционально приложенному к образцу напряжению U. При таком режиме измерений, как известно [11], величина дрейфовой подвижности носителей заряда может быть определена двумя способами: из времени пролета и из величины фототока.

В первом случае значение дрейфовой подвижности вычислялось по формуле

$$\iota = L^2 / t_T U, \tag{1}$$

где t_T — время пролета носителей заряда через образец в условиях слабой инжекции, которое связано с t_m соотношением $t_m = 0.8t_T$ [11].

Во втором случае значение дрейфовой подвижности можно определить из выражения для плотности начального тока в условиях ТОПЗ [11]:

$$j_0 = I_0/S = \mu \cdot \varepsilon \cdot U^2/(2.25 \cdot 10^{13} L^3) \,\mathrm{A/cm^2},$$
 (2)

где *є* — относительная диэлектрическая проницаемость.

Полученные из формулы (1) значения дрейфовой подвижности электронов μ_e и дырок μ_h в зависимости от приложенного напряжения приведены на рис. 2. Как видно из этого рисунка, при напряженности электрического поля $F = 10^4$ В/см $\mu_e = 6 \cdot 10^{-3}$ и $\mu_h = 3 \cdot 10^{-3}$ см²/В · с, и величина подвижности возрастает при увеличении U.

Физика и техника полупроводников, 2004, том 38, вып. 9

Установленная зависимость дрейфовой подвижности от напряженности электрического поля может свидетельствовать о дисперсионном характере переноса носителей заряда в *PSC*, при котором в образце дрейфует сильно размытый в пространстве пакет носителей заряда [6]. Такой характер переноса позволяет также объяснить тот факт, что определенное из экспериментальных кривых I(t) отношение I_m/I_0 было меньше величины 2.7, соответствующей идеальному ТОПЗ [9,12].

Поскольку значения дрейфовой подвижности носителей заряда были вычислены по формуле (1), формула (2) была использована для определения величины ε . Подставив в выражение (2) известные значения I_0, S, μ, L и U, мы получили величину $\varepsilon \approx 4$. Следует отметить, что полученное значение ε близко к установленному в пористом Si [8].

Вид зависимостей I(t) и $\mu(F)$ в *PSC* также оказался близким к полученным в пористом Si, а низкие значения дрейфовой подвижности в *PSC* имеют тот же порядок величины [8–10]. Это позволяет сделать вывод, что в *PSC* так же, как и в пористом Si [5,6], перенос носителей заряда контролируется захватом на локализованные состояния. При таком переносе движение носителей в разрешенной зоне с высокой подвижностью μ_0 , соответствующей омической проводимости, ограничено многократным захватом на ловушки. В *PSC* локализованные состояния могут возникать, например, на развитой поверхности образовавшихся пор. Дисперсионный характер переноса позволяет говорить о наличии распределения локализованных состояний по энергиям.

Сделанное заключение согласуется с данными работы [13], где вывод об образовании локализованных состояний в *PSC* был сделан на основании результата измерения вольт-фарадных характеристик барьеров Шоттки к *PSC*.

Работа выполнена при частичной поддержке гранта NICOP № 00014-01-1-0828.

Список литературы

- A.O. Konstantinov, C.I. Harris, E. Janzen. Appl. Phys. Lett., 65, 2699 (1994).
- [2] S. Zangooie, P.O.A. Persson, J.N. Hilfiker. Mater. Sci. Forum, 338–348, 537 (2000).
- [3] S. Soloviev, T. Das, T.S. Sudarshan. Electrochem. Sol. St. Lett., 6, G22 (2003).
- [4] M. Mynbaeva. Mater. Res. Soc. Symp. Proc., 742, 303 (2003).
- [5] W.E. Spear. J. Non-Cryst. Sol., 1, 197 (1969).
- [6] Н. Мотт, Э. Дэвис. Электронные процессы в некристаллических веществах (М., Мир, 1982). [Пер. с англ.: N. Mott, E. Davis. Electronic processes in non-crystalline solids].
- [7] Э.А. Лебедев, Л.П. Казакова. В сб.: Электронные явления в халькогенидных стеклообразных полупроводниках, под ред. К.Д. Цэндина (СПб., Наука, 1996) гл. 4, с. 141.

- [8] Л.П. Казакова, А.А. Лебедев, Э.А. Лебедев. ФТП, 31, 609 (1997).
- [9] Н.С. Аверкиев, Л.П. Казакова, Э.А. Лебедев, Н.Н. Смирнова. ФТП, 35, 609 (2001).
- [10] Н.С. Аверкиев, Л.П. Казакова, Н.Н. Смирнова. ФТП, 36, 355 (2002).
- [11] М. Ламперт, П. Марк. Инжекционные токи в твердых телах (М., Мир, 1973). [Пер. с англ., V.A. Lampert, P. Mark. Current injection in solids (N.Y.-London, 1970)].
- [12] M. Silver, E. Snow, D. Wesson, K. Okamoto. J. Non-Cryst. Sol., 66, 237 (1984).
- [13] P.A. Ivanov, M.G. Mynbaeva, S.E. Saddow. Semicond. Sci. Technol., 19, 319 (2004).

Редактор Л.В. Беляков

Charge Carrier Drift Mobility in Porous Silicon Carbide

L.P. Kazakova, M.G. Mynbaeva, K.D. Mynbaev

Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract Both electron and hole drift mobilities have been measured using the time-of-flight technique in a porous silicon carbide fabricated by the surface anodization of *n*-type 4*H*-SiC wafers. The electron and hole mobilities at 300 K in the electric field of 10^4 V/cm were $\mu_e = 6 \cdot 10^{-3}$ and $\mu_h = 3 \cdot 10^{-3}$ cm²/Vs, respectively. Low mobility values were explained by carriers trapping in localized states.