Электрофизические свойства и предельное положение уровня Ферми в InSb, облученном протонами

© В.Н. Брудный[¶], В.М. Бойко^{*}, И.В. Каменская, Н.Г. Колин^{*¶¶}

Сибирский физико-технический институт им. В.Д. Кузнецова,

634050 Томск, Россия

* ФГУП Научно-исследовательский физико-технический институт им. Л.Я. Карпова, 249033 Обнинск, Россия

(Получена 11 ноября 2003 г. Принята к печати 27 ноября 2003 г.)

Представлены результаты экспериментальных и модельных исследований электрофизических параметров и предельного положения уровня Ферми в металлургически и ядерно легированном InSb, облученном ионами водорода (10 МэВ, 2 · 10¹⁶ см⁻², 300 К). Показано, что предельные электрофизические параметры облученного InSb соответствуют материалу *p*-типа проводимости. В интервале температур 20–500°С исследованы особенности отжига радиационных дефектов.

1. Введение

Протонное облучение применяется для изготовления p-n-переходов, высокоомных областей, а также областей *n*-типа проводимости в InSb. Кроме того, использование протонных пучков позволяет получить материал с высокой плотностью радиационных дефектов (РД), что важно при исследовании физики радиационных нарушений и оценках так называемых предельных (стационарных) параметров облученного полупроводника, знание которых необходимо при прогностических оценках поведения материала в условиях высокоэнергетического радиационного воздействия. Исследования радиационных нарушений и их термической стабильности в данном соединении важны и при развитии методов ядерного (трансмутационного) легирования InSb.

Уже ранние исследования данного материала показали высокую чувствительность его электрофизических свойств к воздействию протонной бомбардировки. Однако большинство работ было выполнено на тонких слоях, полученных с помощью облучения протонами с энергиями 60–300 кэВ, когда нарушенные области материала сильно неоднородны по глубине и, кроме того, существенно влияние поверхности и подложки на измеряемые параметры [1–3]. В то же время облучение высокоэнергетическими 17.5 [4] и 50 МэВ [5] протонами было выполнено при относительно невысоких интегральных потоках частиц (10^{15} и $7 \cdot 10^{15}$ см⁻²).

В настоящей работе проведены исследования электрофизических свойств и особенностей отжига РД на объемных образцах InSb в условиях высокодозового протонного облучения. Впервые выполнено исследование влияния протонного облучения на электрофизические параметры ядерно легированного InSb (ЯЛИС). Известно, что ядерное легирование InSb позволяет получить материал *n*-типа проводимости с высокой однородностью электрических свойств по объему материала (несколько %) за счет введения донорных примесей Sn (97.9%) и Te (2.1%), что представляет значительный технический интерес [6].

2. Методика эксперимента

В работе исследовались электрофизические свойства *n*- и *p*-InSb (Чохральский) с уровнем исходного легирования от $1.8 \cdot 10^{16}$ см⁻³ (*n*-тип) до $3 \cdot 10^{13}$ см⁻³ (*p*-тип) при 77 К, а также образцы ядерно легированного InSb. В качестве материала для получения ЯЛИС использовался специально не легированный монокристаллический InSb (Чохральский) с концентрацией электронов $n = (1-2) \cdot 10^{14}$ см⁻³ (образец 3), $n = (7-9) \cdot 10^{13}$ см⁻³ (образец 4), $n \le 10^{14}$ см⁻³ (образец 5) соответственно. Образцы ЯЛИС получали путем облучения InSb реакторными нейтронами в реакторе типа ВВР-ц ФГУП НИФХИ им. Л.Я. Карпова (г. Обнинск). После вылеживания такого материала для спада наведенной активности образцы подвергались термообработке при 450°C в течение 1 ч.

Облучение протонами $(j = 5 \cdot 10^{-8} \text{ A/cm}^2, E = 10 \text{ МэВ}, D = 5 \cdot 10^{12} - 2 \cdot 10^{16} \text{ см}^{-2})$ проводилось на циклотроне ИЯФ ТПУ (г. Томск) при температурах, близких к комнатным. Для исследований использовались образцы толщиной ~ 200 мкм, что меньше среднего проецированного пробега $R_p \approx 300$ мкм протонов 10 МэВ в InSb согласно данным послойных измерений [7]. Параметры материалов до и после облучения максимальными потоками $2 \cdot 10^{16}$ см⁻³ протонов 10 МэВ представлены в таблице 1. Базовая температура измерений в работе T = 77 К.

Изохронный отжиг ($\Delta T = 20^{\circ}$ С, $\Delta t = 10$ мин) исходных и облученных образцов InSb в интервале температур 20–500°С проводился в вакууме, причем перед каждым измерением образцы травились в виннокислом травителе 25% С₄H₆O₆: H₂O₂: HF=18:14:1 в течение 10–15 с.

Расчеты $R_{\rm H}$ и ρ в InSb проводились в двухзонном приближении:

$$R_{\rm H} = (1/q)(p - nb^2)/(p + nb)^2,$$

 $ho = q(n\mu_n + p\mu_p).$

Здесь $b = \mu_n/\mu_p \approx 10^2$ — отношение холловских подвижностей свободных электронов μ_n и дырок μ_p в InSb,

[¶] E-mail: brudnyi@ic.tsu.ru

^{¶¶} E-mail: ngkolin@mail.ru.com

		Исходные параметры			Параметры после облучения		
N₂	Материал	<i>n</i> , <i>p</i>	ρ	$\mu_{ m H}$	R _H	ρ	$\mu_{ m H}$
		см ⁻³	Ом · см	$\mathrm{c}\mathrm{m}^{2}\mathrm{B}^{-1}\mathrm{c}^{-1}$	$cm^3/A \cdot c$	Ом · см	$\mathrm{c}\mathrm{m}^{2}\mathrm{B}^{-1}\mathrm{c}^{-1}$
1	ИСЭ-14 (Те)	$1.4\cdot10^{14}$	$8.0 \cdot 10^{-2}$	$5.58 \cdot 10^5$	$4.60\cdot 10^5$	$3.06\cdot 10^2$	$1.50\cdot 10^3$
2	ИСЭ-13 (Те)	$4.3\cdot 10^{14}$	$3.0\cdot10^{-2}$	$4.80\cdot 10^5$	$4.01 \cdot 10^5$	$2.88\cdot 10^2$	$1.39\cdot 10^3$
3	ЯЛИС-3 (Sn)	$1.0\cdot 10^{15}$	$2.0\cdot 10^{-2}$	$3.12\cdot 10^5$	$3.30\cdot 10^5$	$2.41 \cdot 10^2$	$1.37\cdot 10^3$
4	ЯЛИС-5 (Sn)	$1.2\cdot 10^{15}$	$1.68 \cdot 10^{-2}$	$3.10\cdot 10^5$	$3.40\cdot 10^5$	$2.3\cdot10^2$	$1.48\cdot 10^3$
5	ЯЛИС-4 (Sn)	$(1.0{-}1.8)\cdot10^{16}$	$5.0 \cdot 10^{-3}$	$1.25\cdot 10^5$	$2.10\cdot 10^5$	$1.86 \cdot 10^2$	$1.13\cdot 10^3$
6	ИСД-15 (Zn)	$2.97\cdot 10^{13}$	$5.54\cdot 10^1$	$3.80\cdot 10^3$	$5.38\cdot 10^5$	$5.15\cdot 10^2$	$1.04\cdot 10^3$

Таблица 1. Параметры исходных и облученных протонами $D = 2 \cdot 10^{16}$ см⁻² кристаллов InSb

q — заряд электрона, $R_{\rm H}$ — постоянная Холла, ρ — удельное сопротивление, остальные обозначения общеприняты.

3. Экспериментальные результаты

Дозовые зависимости постоянной Холла $R_{\rm H}$ выявляют компенсацию исходной электрической активности в исходных образцах *n*-InSb и *p*-*n*-конверсию типа проводимости для исходного *p*-InSb (рис. 1), что в целом соответствует литературным данным по протонному [4,5] и электронному 1 [8,9] и 50 МэВ [10] облучению InSb вблизи 300 К. На рис. 1 и последующих рисунках белый символ соответствует материалу *n*-типа проводимости, темный — *p*-типу. В отличие от литературных данных после участка "насыщения" на зависимостях $R_{\rm H}(D)$ при протонном облучении наблюдается дальнейшее увеличение значения $|R_{\rm H}|$ до $-(6-8) \cdot 10^5$ см³/Кл для потоков $D = 10^{16}$ см⁻² не только в исходном *n*-InSb, но и в исходном *p*-InSb, который приобрел *n*-тип проводимости

Рис. 1. Изменение постоянной Холла $|R_{\rm H}|$ в образцах InSb при протонном 10 МэВ облучении. Нумерация кривых на рис. 1–4 соответствует нумерации образцов табл. 1.

в результате облучения. Это указывает на то, что во всех исследованных образцах при потоках протонов, превышающих 10^{14} см⁻², имеет место компенсация электронной проводимости и смещение уровня Ферми в направлении валентной зоны. Соответствующие изменения холловской подвижности носителей заряда $\mu_{\rm H} = R_{\rm H}\sigma$ представлены на рис. 2. Можно отметить, что при

Рис. 2. Изменение $|R_{\rm H} \cdot \sigma|$ в образцах InSb при протонном 10 МэВ облучении.

потоках протонов $D > 10^{14}$ см⁻² значения $\mu_{\rm H}(D)$ во всех исследованных материалах практически идентичны, т.е. кинетические свойства облученных образцов целиком определяются протонным облучением РД и не зависят от параметров исходных кристаллов. Эти исследования показывают, что в результате облучения протонами при 300 К в InSb вводятся РД донорного и акцепторного типов, а эффективность их влияния на электрофизические свойства материала зависит от уровня легирования и типа проводимости исследуемого кристалла. При этом в исходном *n*-InSb более эффективны радиационные акцепторы во всем интервале интегральных потоков облучения, а в исходном *p*-InSb на начальных этапах облучения

Рис. 3. Зависимость $|R_{\rm H}|$ от температуры изохронного (10 мин) отжига для исходных кристаллов InSb.

Рис. 4. Зависимость $|R_{\rm H}|$ от температуры изохронного (10 мин) отжига для облученных протонами $D = 1 \cdot 10^{14} \,{\rm cm}^{-2}$, 10 МэВ кристаллов InSb.

до доз $\sim 6 \cdot 10^{14} \text{ см}^{-2}$ более эффективны радиационные доноры, а при дальнейшем облучении — радиационные акцепторы, как и в исходных образцах *n*-InSb. Донорно-акцепторный характер РД в InSb подтверждается и данными исследований отжига облученного материала.

На рис. 3 и 4 представлены результаты исследования изохронного отжига исходных и облученных кристаллов InSb соответственно. В необлученных образцах *n*-InSb выявлена компенсация исходной проводимости при $T_{ann} \ge 260-300^{\circ}$ С и n-p-конверсия типа проводимости при $T_{ann} = 420-450^{\circ}$ С. В исходном *p*-InSb концентрация дырок растет при температурах отжига выше $\sim 350^{\circ}$ С. Эти явления достаточно известны в литературе и связываются с формированием при высокотемператур-ном нагреве InSb термоакцепторов [11]. В облученных

протонами образцах с исходным *п*-типом проводимости при отжиге в интервале температур 20-500°C наблюдается последовательная смена знака постоянной Холла $(n-p-p^+$ -конверсия типа проводимости) при температурах: 60-300°С — преимущественный отжиг радиационных доноров, 300-400°С — отжиг радиационных акцепторов и при 420-460°С — интенсивное формирование термоакцепторов (рис. 4). Аналогично в облученном исходном *p*-InSb наблюдается *n*-*p*-*p*⁺-конверсия типа проводимости при температурах отжига соответственно: вблизи 300° C — "обратная" n-p — конверсия типа проводимости, преимущественный отжиг радиационных доноров с последующим увеличением плотности дырок до $\sim 5 \cdot 10^{15} \, \mathrm{cm}^{-3}$ за счет формирования термоакцепторов при температурах отжига выше 350°С. Можно отметить, что с увеличением интегрального потока протонов или с уменьшением исходного уровня легирования материала отмечен сдвиг стадий изохронного отжига в область более высоких температур.

Обсуждение экспериментальных данных

Характерная особенность ранее опубликованных работ по исследованию электрофизических свойств облученного InSb состоит в выявлении участка "насыщения" на кривых $\rho(D)$ и $R_{\rm H}(D)$ при облучении быстрыми нейтронами при 300 К [12] и 77 К [13], электронами 50 МэВ, 300 К [10], электронами 4.5 МэВ, 80 К [14]. При этом важно отметить, что при бомбардировке быстрыми нейтронами при 77 и 300 К [12,13] и электронами при 300 К [8] получены образцы *п*-типа проводимости с концентрацией свободных электронов $3 \cdot 10^{12} - 6 \cdot 10^{14} \, \text{см}^{-3}$, а при низкотемпературном 7-200 К облучении гамма-квантами и электронами [14-17] — образцы р-типа проводимости с концентрацией свободных дырок $5 \cdot 10^{13} - 3 \cdot 10^{15} \, \mathrm{cm}^{-3}$. При этом в области "насыщения" дозовых зависимостей $\rho(D)$ и $R_{\rm H}(D)$ для температур облучения вблизи 80, 200 и 300 К оцененные положения уровня Ферми составляли около $E_v + 0.03$ эВ, $E_v + 0.08$ эВ и $E_c - 0.03$ эВ соответственно [9,10,14]. Характерные особенности электрофизических параметров и *n*-тип проводимости InSb, облученного быстрыми нейтронами или электронами высоких энергий 50 МэВ, связывались с накоплением дефектов кластерного типа, хотя электронная структура таких кластеров в InSb неизвестна до настоящего времени. При этом следует отметить, что образцы InSb электронного типа проводимости были получены и при низкоэнергетическом 1 МэВ, 300 К [8] электронном облучении. По мнению большинства исследователей, решающим фактором, определяющим тип накапливаемых в решетке РД и соответственно свойства облученного InSb, является температура $T_{\rm rad}$, при которой проводится облучение. В настоящее время данные по спектру РД в InSb включают состояния с энергетическими уровнями вблизи $E_c - 0.03$ эВ, $E_V + (0.03 - 0.06)$ эВ и состояния

Рис. 5. Дозовые зависимости удельного сопротивления образцов InSb, облученных: *1* [12], *2* [12], *3* [19] — быстрыми нейтронами; *4* [6] — полным спектром реакторных нейтронов и отожженных при 450°C в течение 20 мин; *5*, 7 — электронами 1 МэВ; *6*, 8 — протонами 10 МэВ.

вблизи середины запрещенной зоны [10,14,15,18]. При этом отмечается, что с увеличением температуры облучения или нагреве образца, облученного при низких температурах, увеличивается доля дефектов, энергетические уровни которых расположены в верхней половине запрещенной зоны. Предположительно именно с этим и связывается сдвиг "предельного" уровня Ферми в InSb в направлении зоны проводимости с ростом температуры облучения.

Однако, как показали последующие исследования InSb, облученного большими интегральными потоками быстрых (E > 0.1 M) нейтронов [19], а также протонов и электронов (результаты настоящего исследования), выявленная ранее область "насыщения" для кривых $\rho(D)$ или $R_{\rm H}(D)$ вовсе не соответствует предельным электрофизическим параметрам облученного InSb. Дальнейшее облучение такого материала приводит к изменению зависимостей как $\rho(D)$, так и $R_{\rm H}(D)$. Причем при больших потоках быстрых нейтронов удельное сопротивление InSb уменьшается по сравнению с его значением в области "насыщения" $\rho(D)$, а при облучении электронами 1 МэВ и протонами 10 МэВ величины ρ и R_H возрастают. Результаты настоящих измерений при *T* = 77 К совместно с литературными данными — облучение быстрыми [12,19] и реакторными [6] нейтронами для $T \approx 300 \,\mathrm{K}$ — представлены на рис. 5.

Из этих данных следует, что при малых интегральных потоках всех видов облучения ($T_{\rm rad} \approx 300 \, {\rm K}$) в *n*-InSb до-

Физика и техника полупроводников, 2004, том 38, вып. 7

минируют РД акцепторного типа, а в исходном *p*-InSb донорного. При этом нейтронное облучение всегда формирует материал *n*-типа проводимости, что можно связать с эффектом ядерного подлегирования материала оловом, $N_{\text{Sn}} \approx 0.2 D_{fn^0}$ [19], где D_{fn^0} — интегральный поток быстрых нейтронов. Это, по-видимому, и приводит к уменьшению удельного сопротивления InSb при больших потоках облучения быстрыми нейтронами. На рис. 5 представлена также зависимость $\rho(D)$ в *n*-InSb, облученном полным спектром реакторных нейтронов (реактор ВВР-ц ФГУП НИФХТИ им. Л.Я. Карпова, г. Обнинск) и отожженном до 450°С (20 мин), в котором большая часть примеси олова, $N_{\rm Sn} \approx 2.9 \cdot D_{rn^0}$, перешла в электрически активное состояние [6], здесь D_{rn⁰} — полный интегральный поток реакторных нейтронов. В отличие от нейтронных пучков, в области больших потоков электронов и протонов величины ρ и $R_{\rm H}$ растут по мере облучения, что указывает на преимущественную эффективность РД акцепторного типа и смещение уровня Ферми в глубь запрещенной зоны во всех исследованных материалах.

Можно отметить, что в предыдущих исследованиях "предельные" параметры облученного InSb ассоциировались с появлением участков "насыщения" на дозоных зависимостях $\rho(D)$ или $R_{\rm H}(D)$. При этом само наличие таких участков "насыщения" приписывалось установлению равновесия между процессами генерации и отжига РД при данных условиях облучения. Между тем многочисленные экспериментальные исследования показывают, что в облученных полупроводниках в условиях высокодозного облучения, когда плотность РД превышает плотность исходных легирующих примесей, всегда достигается предельное (стационарное) положение уровня Ферми, далее мы обозначим его F_{SAT} , которое не зависит от условий облучения, т.е. спектра введенных высокоэнергетическим облучением дефектов, и является характеристическим ("собственным") параметром кристалла [20]. Таким образом, в настоящее время вопрос о поведении InSb при воздействии высокоэнергетической радиации и о предельных электрофизических параметрах (типе проводимости, положении уровня Ферми) облученного материала остается открытым. Именно это обусловливает необходимость дальнейших экспериментальных и теоретических исследований данной проблемы.

5. Модельные оценки

Развитые в настоящее время теоретические модели для оценки F_{SAT} базируются на его отождествлении с положением точки ветвления (ТВ) комплексной энергетической структуры кристалла (энергии, вблизи которой изменяется донорно-акцепторный характер дефектных состояний полупроводника). Это положение ТВ отыскивается в разных эвристических моделях как энергетическое положение уровня зарядовой нейтральности E_{CNL} для дефектных состояний кристалла [21], как положение

Таблица 2. Расчетные значения E_g , E_{CNL} , E_{LNL} , E_{DL} , $\langle E_G \rangle / 2$ для InSb, эB, T = 0 K. Отсчет значений E_{CNL} , E_{LNL} , E_{DL} , $\langle E_G \rangle / 2$ от потолка валентной зоны

E_g	E_{CNL}	E_{LNL}	E_{DL}	$\langle E_G \rangle / 2$
0.24	0.03	0.12	0.17	0.05

уровня нейтральности для локального дефектного амфотерного центра E_{LNL} [22], как энергетическое положение наиболее локализованного (наиболее глубокого) дефектного состояния E_{DL} кристалла в энергетическом интервале вблизи его минимальной запрещенной зоны [23,24].

Расчетные значения соответствующих величин для InSb представлены в табл. 2. Кроме того, в табл. 2 дано положение так называемой mid-gap energy $\langle E_G \rangle/2$, где $\langle E_G \rangle$ — средний энергетический интервал между нижней зоной проводимости и верхней валентной зоной в пределах первой зоны Бриллюэна кристалла. Поскольку в случае одномерного изотропного кристалла с энергетической щелью $\langle E_G \rangle$ положению ТВ соответствует $\langle E_G \rangle / 2$ [25], то это значение также может быть отождествлено с F_{SAT} . Соотношение расчетных величин E_{CNL} , E_{LNL} , E_{DL} и $\langle E_G \rangle / 2$ для InSb в целом аналогично как и в других полупроводниках и выявляет разброс численных значений, полученных с использованием разных моделей. В отличие от "широкозонных" полупроводников такой разброс расчетных величин является критическим в случае InSb вследствие малости его запрещенной зоны Eg. Но в целом результаты модельных расчетов указывают на предпочтительное положение предельного уровня Ферми в облученном InSb вблизи серелины или в нижней половине его запрешенной зоны. Это соответствует экспериментальным исследованиям низкотемпературного 7-200 К облучения InSb гаммаквантами и электронами, когда удается избежать отжига большей части РД [14-17].

Представленные в работе теоретические модели связывают расчетные значения E_{CNL} , E_{LNL} , E_{DL} и $\langle E_G \rangle/2$ в дефектном полупроводнике не с характером нарушений решетки, а с особенностями зонного спектра объемного кристалла. Поэтому предельные электрофизические параметры облученного полупроводника инвариантны к типу РД и, следовательно, к условиям облучения и предыстории материала. И хотя спектр РД зависит от условий облучения, в кристалле всегда формируется такой набор дефектов, который в конечном случае обеспечивает смещение уровня Ферми к положению ESAT при плотности РД, превышающей плотность легирующих примесей. Это подтверждается, например, соответствующими исследованиями GaAs, когда высокоомные образцы материала были получены за счет электронного облучения при температурах вблизи 300 и 570-670 К [26,27] за счет набора различного спектра РД, так называемых Е- и Н-ловушек в первом случае и *Р*-ловушек — во втором [28,29]. При этом для получения высокоомного GaAs в условиях высокотемпературного облучения всего лишь потребовалось увеличить интегральный поток электронов приблизительно в 25 раз.

Более того, как показывают эксперименты [30], и в случае облучения *n*-InSb электронами 4-8 МэВ при 300 К возможно получение материала р-типа проводимости, как и в случае низкотемпературного облучения, если последующие измерения образцов проводятся вблизи гелиевых температур. При этом точка *n*-*p*-конверсии облученного кристалла сдвигается в более высокотемпературную область с ростом интегрального потока электронов. Это также подтверждает, что участки "насыщения" на кривых $\rho(D)$ и $R_{\rm H}(D)$, выявленные в более ранних исследованиях, соответствуют не предельным, а некоторым промежуточным параметрам облученного InSb. Вследствие высокой эффективности отжига РД в InSb при $T \approx 300 \,\mathrm{K}$ необходимы большие уровни облучения для достижения предельных (стационарных) электрофизических параметров данного соединения при комнатных температурах облучения. Можно также предположить, что появление максимума на кривых $R_{\rm H}(D)$ для $D \approx 10^{16} \, {\rm cm}^{-2}$ при протонном облучении (рис. 1) указывает на переход материала к *р*-типу проводимости при больших потоках ионов H⁺.

Таким образом, экспериментальные и модельные исследования указывают на то, что предельное состояние облученного InSb должно соответствовать материалу *p*-типа проводимости (кроме облучения нейтронами) независимо от температуры облучения, если только будет достигнута соответствующая плотность РД.

6. Заключение

Экспериментальные исследования показывают, что *p*-тип проводимости InSb достаточно быстро достигается для низкотемпературных 7-200 К условий облучения (кроме быстрых нейтронов), когда большинство РД в кристаллической решетке "заморожено". Повышение температуры образца до 300 К приводит к отжигу значительной доли РД, однако и в этом случае может быть накоплено достаточное их количество для того, чтобы получить материал *р*-типа проводимости. Образцы p-InSb могут быть получены и в условиях высокотемпературного облучения протонами или последующего отжига при температурах 230-250°C материала, облученного при 300 К. Это позволяет выделить для InSb несколько групп РД. Первую группу образуют РД преимущественно акцепторного типа, ответственные за *р*-тип проводимости InSb, облученного при низких температурах ($T \le 200 \, \text{K}$). Вторую группу формируют РД донорного типа, стабильные до температур отжига около 230-250°С. Третья группа РД акцепторного типа отжигается при температурах 320-370°С. Именно с этим и связаны наблюдаемые особенности электрофизических свойств InSb, облученного (или отожженного) при разных температурах. Не обнаружено каких-либо отличий в изменении свойств металлургического и ядерно легированного InSb при облучении (300 K) ионами H⁺ и последующем отжиге.

Работа выполнена при поддержке проекта МНТЦ "Высокостабильные радиационно стойкие полупроводники", № 1630.

Список литературы

- [1] I. Fujisawa. Jap. J. Appl. Phys., 19 (11), 2137 (1980).
- [2] N.Y. Chernyshova, G.A. Kachurin, V.A. Bogatyriov. Phys. Status Solidi A, 47 (1), K5 (1978).
- [3] Л.В. Лежейко, Е.В. Любопытова, В.И. Ободников. ФТП, 16 (9), 1638 (1982).
- [4] Ф.А. Заитов, О.В. Горшкова, В.Н. Ованесов, А.Я. Поляков. ФТТ, 14 (2), 398 (1980).
- [5] Г.А. Вихлий, А.Я. Карпенко, И.Г. Мегела, Л.И. Тараброва. Укр. физ. журн., 27 (7), 1104 (1982).
- [6] Н.Г. Колин, Д.И. Меркурисов, С.П. Соловьев. ФТП, 33 (7), 774 (1999).
- [7] В.Н. Давыдов, Изв. вузов. Физика, 42 (9), 37 (1999).
- [8] В.Н. Брудный, И.В. Каменская. Изв. вузов. Физика, 34 (7), 99 (1991).
- [9] Н.А. Витовский, Т.В. Машовец, О.В. Оганесян. ФТП, 12 (11), 2143 (1978).
- [10] Н.А. Витовский, Т.В. Машовец, О.В. Оганесян, Н.Х. Памбухчан. ФТП, **12** (9), 1861 (1978).
- [11] М.Н. Кеворков, А.Н. Попков, В.С. Успенский, Е.С. Юрова, И.М. Юрьева. Изв. АН СССР. Неорг. матер., 16 (12), 2114 (1980).
- [12] HJ.W. Cleland, J.H. Crawford. Phys. Rev., 95, 1177 (1954).
- [13] Л.К. Водопьянов, Н.И. Курдиани. ФТТ, 7 (9), 2749 (1965).
- [14] L.W. Aukerman. Phys. Rev., 115 (5), 1125 (1959).
- [15] Т.В. Машовец, З.Ю. Хансеваров. ФТТ, 8 (6), 1690 (1966).
- [16] S. Mehra. Phys. Status Solidi A, 49 (1), 285 (1978).
- [17] S. Myhra. Rad. Eff., 59, 1 (1981).
- [18] S.D. Koumitz. Sol. St. Commun., 64 (8), 1171 (1987).
- [19] Н.Г. Колин, Д.И. Меркурисов, С.П. Соловьев. ФТП, 33 (8), 927 (1999).
- [20] И.Н. Брудный, В.Г. Воеводин, О.В. Воеводина, С.Н. Гриняев, И.В. Ивонин, Л.Г. Лаврентьева, Г.Ф. Караваев. Изв. вузов. Физика, 41 (8), 26 (1999).
- [21] В.Н. Брудный, С.Н. Гриняев. ФТП, 32 (3), 315 (1998).
- [22] V.N. Brudnyi, S.N. Grinyaev, V.E. Stepanov. Physica B, 212, 429 (1995).
- [23] В.Н. Брудный, С.Н. Гриняев, Н.Г. Колин. ФТП, 37 (5), 557 (2003).
- [24] В.Н. Брудный, С.Н. Гриняев, Н.Г. Колин. Материаловедение, **3** (72), 17 (2003).
- [25] J.J. Rehn, W. Kohn. Phys. Rev. B, 9, 1981 (1974).
- [26] В.С. Вавилов, Л.Ф. Захаренков, В.В. Козловский, Я.Я. Пилькевич, С.И. Пономарев. Изв. вузов. Физика. 32 (9), 110 (1989).
- [27] В.Н. Брудный, М.Д. Вилисова, Л.П. Пороховниченко. Изв. вузов. Физика, 35 (10), 57 (1992).
- [28] V.N. Brudnyi, V.V. Peshev. Phys. Status Solidi A, 105 (1), K 57 (1988).
- [29] В.В. Козловский, Т.И. Кольченко, В.М. Ломако. ФТП, 25 (7), 1169 (1991).
- [30] Е.П. Скипетров, В.В. Дмитриев, Ф.А. Заитов, Г.И. Кольцов, Е.А. Ладыгин. ФТП, 20 (10), 1787 (1986).

Редактор Л.В. Беляков

Electrophysical properties and Fermi-level pinning position in proton-irradiated InSb

V.N. Brudnyi, V.M. Boiko*, I.V. Kamenskaya, N.G. Kolin*

V.D. Kuznetsov Siberian Physical Technical Institute, 634050 Tomsk, Russia *FGUP L.Ya. Karpov Institute of Physical Chemistry, 249033 Obninsk, Russia

Abstract Results of experimental and simulation investigations of electrophysical parameters and the Fermi-level limit position in a proton-irradiated (10 MeV, $2 \cdot 10^{16}$ cm⁻², 300 K) both metallurgical and a neutron-transmutation doped InSb are presented. It has been revealed, that the boundary electrophysical parameters of irradiated InSb are similar to those of the material of the *p*-type conductivity. The peculiarities of the radiation-induced defect annealing in a temperature interval of $(20-500)^{\circ}$ C are investigated.