# Формирование электрически активных центров в кремнии, облученном электронами, в интервале температур 400-700°С

© Е.П. Неустроев, С.А. Смагулова, И.В. Антонова\*, Л.Н. Сафронов\*

Якутский государственный университет,

677891 Якутск, Россия

\* Институт физики полупроводников Сибирского отделения Российской академии наук, 630090 Новосибирск. Россия

(Получена 18 ноября 2003 г. Принята к печати 26 ноября 2003 г.)

Изучено влияние облучения электронами на формирование термодоноров в кремнии. Обнаружено образование областей *n*- и *p*-типа проводимости в объеме монокристаллического кремния, облученного электронами и отожженного при температуре 450°C. Концентрации носителей в областях обоих типов проводимости возрастают с увеличением дозы облучения и времени отжига, что говорит о формировании не только термодоноров, но и термоакцепторов. Неоднородность распределения акцепторных и донорных центров коррелирует с флуктуациями в концентрации кислорода в кремнии.

## 1. Введение

Переход к нанометровым масштабам в современной электронике привел к снижению температур, используемых на всех этапах технологии изготовления приборных структур до 700-800°С [1]. В то же время отжиг кристаллов кремния при относительно невысоких температурах (400-700°С) приводит к формированию электрически активных центров как донорного (термодоноры) [2], так и акцепторного типа (термоакцепторы) [3,4]. Несмотря на то что термодоноры (ТД) исследуются в течение многих лет, общепризнанная модель этих центров отсутствует до настоящего времени. В последнее время наиболее распространены модели, согласно которым образование термодоноров происходит путем последовательного присоединения атомов кислорода к заряженному ядру [5]. Это приводит к формированию серии близко расположенных энергетических уровней вблизи дна зоны проводимости. С другой стороны, несомненно, что на процессы выделения кислорода из пересыщенного раствора кислорода в кремнии при термообработках оказывает воздействие дефектная структура кристалла, которая определяется прежде всего ростовыми дефектами и дефектами, формируемыми в процессе создания приборов (термообработки, ионная имплантация, процессы окисления и т.д.). В частности, ускоренное формирование термодоноров наблюдалось в кристаллах кремния, имплантированных ионами средних и высоких энергий [6,7]. При измерении концентрации носителей заряда в кристаллах кремния обычно бывает трудно разделить вклад термоакцепторов (ТА) и термодоноров, формируемых при 450°С. Введение термоакцепторов в интервале температур 350-600°C наиболее отчетливо проявляется в бескислородных кристаллах кремния после высоких доз облучения электронами и нейтронами [4] и в кислородсодержащем кремнии после высокоэнергетической ионной имплантации на начальных стадиях отжига при температуре 450°С [8]. Следует ожидать, что термоакцепторы вводятся в кислородсодержащий кремний и при других видах облучения, например при облучении электронами. Результирующий тип проводимости и количество носителей заряда будут определяться соотношением количества термодоноров и термоакцепторов в облученном кремнии.

Цель данной работы — исследование влияния облучения электронами на формирование электрически активных центров (термодоноров и термоакцепторов) в кислородсодержащем кремнии в интервале температур 400-700°С.

## 2. Методика эксперимента

Исследовались монокристаллы кремния, выращенные методом Чохральского и имеющие р-тип проводимости с концентрацией легирующей примеси (бора) 8 · 10<sup>14</sup> см<sup>-3</sup>. Концентрация кислорода в образцах составляла 8 · 10<sup>17</sup> см<sup>-3</sup> (для определения количества кислорода использован пик поглощения при 1107 см<sup>-1</sup> с калибровочным коэффициентом  $3.14 \cdot 10^{17} \, \text{сm}^{-2}$ ). Импульсное облучение длительностью 400 мкс с плотностью тока 0.1-0.3 А/см<sup>2</sup> проводилось электронами с энергией 2.0 МэВ. Доза облучения варьировалась в пределах 10<sup>14</sup>-10<sup>17</sup> см<sup>-2</sup> (для образца, обозначенного как E1, доза облучения составляла 10<sup>14</sup> см<sup>-2</sup>, E2 -  $10^{15}$  cm<sup>-2</sup>, E3 -  $10^{16}$  cm<sup>-2</sup>, E4 -  $10^{17}$  cm<sup>-2</sup>, Е0 — необлученный образец). Температура образцов при облучении не превышала 50°С. После облучения образцы были подвергнуты термооработке в интервале температур T = 400-700°C длительностью 1-10 ч. Для исследования использованы методики вольт-фарадных характеристик, эффекта Холла и ИК-спектроскопии (FTIR).

## 3. Экспериментальные результаты

На рис. 1 представлена концентрация носителей заряда в образцах кремния, облученных электронами и подвергнутых термообработке при температуре  $T = 450^{\circ}$  С



**Рис. 1.** Изменение концентрации носителей заряда в зависимости от времени отжига в образцах кремния, облученных электронами при разных дозах облучения и подвергнутых термообработке при  $T = 450^{\circ}$ С. Для наглядности значения концентрации электронов, в отличие от концентрации дырок, показаны на отрицательной оси *N*.



**Рис. 2.** Зависимости концентрации носителей заряда от температуры отжига в интервале  $T = 400-700^{\circ}$ С, при времени отжига t = 5 ч. Для наглядности значения концентрации электронов, в отличие от концентрации дырок, показаны на отрицательно оси *N*.

в зависимости от времени отжига. Данные получены методом вольт-фарадных характеристик. Для образцов ЕЗ и Е4, облученных дозами  $10^{16}$  и  $10^{17}$  см<sup>-2</sup> соответственно, были обнаружены различные значения концентрации носителей заряда в разных точках поверхности, начиная с времени отжига 5-7 ч. При этом, как видно из рисунка, различные области поверхности имели как *p*-, так и *n*-тип проводимости (показаны максимальные значения концентрации носителей заряда в областях с *p*- и *n*-типами проводимости). Размеры этих областей находятся в пределах от 0.5 до 1-2 см<sup>2</sup>. Если вырезать полоску вдоль радиуса пластины от центра к краю, то *p*- и *n*-области по форме представляют собой чередующиеся полосы. При послойном удалении поверхност-

ных слоев неоднородность распределения электрически активных центров сохраняется, может лишь несколько изменяться конфигурация этих областей. Концентрация электрически активных акцепторов в необлученном (контрольном) образце ЕО изменялась практически монотонно, свидетельствуя об увеличении донорных центров с возрастанием времени отжига (на рис. 1 показана тонкой сплошной прямой), что обусловлено введением термодоноров в кислородсодержащем кремнии.

Концентрация носителей заряда в облученных образцах и исходных кристаллах в зависимости от температуры отжига показана на рис. 2. Длительность термообработки составляла t = 5 ч. Отжиг при  $T = 400^{\circ}$ С приводит к конверсии проводимости с *p*-типа на *n*-тип для образца Е4 и к минимальным значениям концентрации дырок для всех других образцов.

На рис. 3 представлены значения концентрации носителей заряда в кристаллах кремния, подвергнутых термообработке при  $T = 400^{\circ}$ С, в зависимости от дозы облучения. Для образцов, отожженных в течение 1ч, концентрация акцепторов возрастает по сравнению с исходным кристаллом при всех использованных дозах облучения. По мере увеличения времени отжига концентрация акцепторов уменьшается. Наиболее отчетливо эффект наблюдается при высоких дозах облучения  $(10^{17} \,\mathrm{cm}^{-2})$ . При увеличении температуры отжига до 500-700°С (области формирования новых термодоноров) образование электрически активных центров (ТД и ТА) не наблюдается, так как концентрация носителей заряда во всех исследованных образцах выходит на уровень исходных значений. Следует отметить, что температурный интервал существования донорных центров, вводимых при термообработках, совпадает с интервалом существования кислородсодержащих термодоноров.

Измерения методом ИК-спектроскопии показали, что концентрация оптически активного кислорода сразу после облучения составляет  $(4-5) \cdot 10^{17} \, \mathrm{cm}^{-3}$ , которая



**Рис. 3.** Зависимости концентрации носителей заряда от дозы облучения при  $T = 400^{\circ}$ С при времени отжига t = 0-5 ч. На этом рисунке значения концентрации электронов показаны на положительной оси *N*, а дырок — на отрицательной.

Физика и техника полупроводников, 2004, том 38, вып. 7



**Рис. 4.** Изменение относительной концентрации межузельного кислорода вдоль радиуса кремниевой пластины (от центра к ее краю) до и после отжига при  $T = 425^{\circ}$ С длительностью t = 10 ч. На вставке — типичный спектр оптического поглощения.



**Рис. 5.** Распределение электрически активных центров в кристаллах кремния, облученных электронами, вдоль радиуса кремниевой пластины после отжига при  $T = 425^{\circ}$ С длительностью t = 10 ч. На этом рисунке значения концентрации электронов показаны на положительной оси N, а дырок — на отрицательной.

существенно ниже концентрации кислорода в исходном материале  $(7-8) \cdot 10^{17} \text{ см}^{-3}$ . На рис. 4 показано изменение относительного содержания межузельного кислорода  $N_{O_i}(x)/N_{O_i}^{\text{st}}$  вдоль радиуса пластины кремния  $(N_{O_i}^{\text{st}}(x) -$ концентрация кислорода в исходном кристалле до отжига, x — расстояние от края пластины). Как видно из рисунка, после отжига при 425°C концентрация кислорода еще сильнее уменьшается, чем после облучения. На вставке к рис. 4 показан типичный спектр оптического поглощения исследуемых образцов. Изменение концентрации электрически активных центров вдоль радиуса кристалла для этого же образца показано на рис. 5. Видно, что с уменьшением содержания кислорода концентрация донорных центров также уменьшается (расстояние отсчитывалось от центра образца

к его краю) и в области с наименьшей концентрацией кислорода (край образца) происходит конверсия типа проводимости. Отжиг при  $450^{\circ}$ С приводит к увеличению концентрации оптически активного кислорода практически до исходного значения. Кроме того, было выяснено что образование областей с различными типами проводимости обусловлено неоднородным распределением кислорода в кристаллах кремния: локализация областей с более высокой концентрацией кислорода и областей с л-типом проводимости совпадают. Разница между концентрациями кислорода в областях с *p*- и *n*-типами проводимости для кристалла, отожженного при  $450^{\circ}$ С в течение 10 ч, составляла менее или порядка  $6 \cdot 10^{16}$  см<sup>-3</sup>. Значительного изменения содержания углерода в этих областях не обнаружено.

## 4. Обсуждение

Из результатов, представленных на рис. 1, следует, что увеличение дозы облучения и времени отжига при  $T = 450^{\circ}$ С приводит в некоторых областях кристалла к доминирующей генерации термодоноров (изменение типа проводимости исходно *p*-типа материала на *n*-тип), а в других — к преобладанию термоакцепторов (увеличение концентрации дырок). Термоакцепторы явно можно наблюдать в условиях подавления генерации термодоноров, т.е. в безкислородном кремнии или в кислородсодержащем кремнии, облученном ионами высоких энергий, когда имеет место пространственное разделение дефектов разного типа [2,7]. В данном случае — изменение типа проводимости с *р*-типа на *n*-тип наблюдается при высоких дозах облучения (10<sup>17</sup> см<sup>-2</sup>) и достаточно длительном отжиге (больше 3 ч) при температуре 400°С (рис. 3). С увеличением температуры отжига до 450°C длительностью до 10ч образование областей п-типа происходит и при меньших дозах облучения (10<sup>15</sup> см<sup>-2</sup>, рис. 1). Электронное облучение при использованных энергиях приводит практически к однородному по объему введению радиационных дефектов. Поэтому ответственными за неоднородное распределение могут быть лишь ростовые дефекты, формируемые в процессе выращивания кристаллов, либо неоднородности в распределении фоновых примесей, например, кислорода. Увеличение концентрации термодоноров в отдельных областях может быть обусловлено увеличением количества центров зарождения, созданных радиационными дефектами, возможно, при участии примесей. Если сравнить распределение концентрации кислорода и свободных электронов вдоль радиуса кремниевой пластины (рис. 4, 5), то следует отметить, что ИК-измерения дают усредненную по толщине пластины картину распределения кислорода, а электрофизические измерения показывают распределение электрически активных центров в относительно узком приповерхностном слое. Поэтому неоднородности распределения электронов, представленные на рис. 5 (отжиг при 425°С), не видны на рис. 4 при ИК-измерениях. Тем не менее после отжига при 450°С неоднородность распределения концентрации электрически активных центров в кристаллах уже начинает коррелировать с неравномерным распределением межузельного кислорода в исследуемых образцах, по-видимому, за счет усиления флуктуаций в распределении кислорода.

Уменьшение концентрации межузельного кислорода после облучения связано скорее всего с формированием комплексов из вакансий и кислорода  $VO_n$ , в которых  $n \ge 1$  [9], причем доминирующим центром является, как известно, VO. При температуре отжига 425°C имеет место трансформация  $VO \rightarrow VO_2$  [10]. Повышение температуры отжига до 450°C сопровождается отжигом комплексов VO и VO<sub>2</sub> и соответственно ростом концентрации межузельного кислорода.

Из данных рис. 1 для дозы облучения  $10^{14} \, \mathrm{cm}^{-2}$  (образец Е1) наблюдается некоторое увеличение концентрации дырок (акцепторных центров) при термообработке по сравнению с исходным кристаллом. С уменьшением температуры отжига до 400°С (рис. 3) некоторое увеличение концентрации дырок имеет место уже для всех доз облучения при коротких временах отжига (1ч). По всей видимости, при  $T = 450^{\circ}$ С на фоне образования термодоноров происходит одновременное введение и акцепторных центров, но оно заметно только в областях с относительно низкой концентрацией термодоноров (ТД), например, из-за низкой концентрации кислорода или из-за замедления кинетики формирования ТД на начальных этапах. В остальных случаях термоакцепторы (ТА) не проявляются или их формирование подавляется введением ТД.

Возможность введения центров акцепторного типа в кислородсодержащем кремнии после термообработки при температурах формирования термодоноров обычно даже не рассматривалась. В то же время, как следует из результатов работ других авторов, исследовавших воздействие электронного облучения на формирование термодоноров, количество ТД в таких образцах либо практически не отличалось от концентрации ТД в исходных образцах [11,12], либо было меньше [13,14]. Наблюдаемые разногласия в результатах прекрасно объясняются в рамках одновременного формирования ТД и ТА. Так, в зависимости от дефектного и примесного состава исходного материала, температуры отжига или дозы облучения, суммарная концентрация носителей заряда, равная  $n_0 + N_{\text{TD}} - N_{\text{TA}}$  (или  $p_0 - N_{\text{TD}} + N_{\text{TA}}$ ), могла изменяться сложным образом, что и выглядело часто как неизменность или замедление кинетики формирования ТД (*n*<sub>0</sub> и *p*<sub>0</sub> — исходные концентрации).

По мере повышения температуры отжига (500°С и выше) как ТД, так и ТА практически не вводятся (рис. 2). Температура существования ТД, как известно, ограничена 520°С, но при температурах 600–700°С могли формироваться новые термодоноры. Однако при использованных режимах отжига их введения не наблюдается.

Таким образом, с учетом того что электронное облучение приводит к формированию в кристаллах кремния центров вакансионного типа (VO-центры), а также с учетом данных [8] наиболее вероятно наблюдаемые экспериментальные результаты объясняются участием вакансионных дефектов в процессе формирования как термоакцепторов, так и термодоноров. Причем при малых временах отжига доминируют процессы генерации ТА, при увеличении времени отжига начинает преобладать формирование ТД или же ТА трансформируются в термодоноры. Следует отметить, что такая же ситуация имеет место при облучении высокоэнергетичными ионами [8]. Формирование центров акцепторного типа наблюдается в узком температурном интервале отжига  $(\sim 450^{\circ}\text{C})$  и при температуре  $400^{\circ}\text{C}$  они не выявляются на фоне термодоноров.

## 5. Заключение

Облучение монокристаллов кремния электронами (случай однородного введения радиационных дефектов в объеме материала) и последующий отжиг при 450°С приводят к образованию областей *n*- и *p*-типа проводимости в объеме монокристаллического кремния. Наблюдаемый эффект усиливается с увеличением дозы облучения. Неоднородность распределения ТА и ТД коррелирует с изменением содержания кислорода в кремнии. При увеличении времени отжига начинают доминировать термодоноры. Механизм образования ТА и ТД, наиболее вероятно, обусловлен участием вакансионных дефектов в процессе формирования этих центров.

## Список литературы

- Г.Я. Красников. Конструктивно-технологические особенности субмикронных МОП транзисторов (М., Техносфера, 2002) ч. 1.
- [2] A. Borhgesi, B. Pivac, A. Sassella, A. Stella. J. App. Phys., 77, 4169 (1995).
- [3] В.Н. Мордкович. ФТП, 6, 847 (1964).
- [4] В.Ф. Стась, И.В. Антонова, Е.П. Неустроев, В.П. Попов, Л.С. Смирнов. ФТП, **34**, 162 (2000).
- [5] P. Deak, L.C. Snyder, J.W. Corbett. Phys. Rev., 45, 11612 (1992).
- [6] Е.П. Неустроев, И.В. Антонова, В.П. Попов, Д.В. Киланов, А. Мисюк. ФТП, 33, 1153 (1999).
- [7] E.P. Neustroev, I.V. Antonova, V.P. Popov, V.F. Stas, V.I. Obodnikov. Physica B, 270, 1 (1999).
- [8] С.А. Смагулова, И.В. Антонова, Е.П. Неустроев, В.А. Скуратов. ФТП, 37, 552 (2003).
- [9] T. Hallberg, J.L. Lingstrom. J. Appl. Phys., 72, 5130 (1992).
- [10] C.A. Londos, I.V. Antonova, M. Potsidou, A. Misiuk, J. Bak-Misiuk, A.K. Gutacovskii. J. Appl. Phys., 91, 1198 (2002).
- [11] A. Henry, K. Saminadayar, J.L. Pantrat, N.H. Magnea. Phys. St. Sol. (a), **107** (1), 101 (1988).
- [12] В.В. Литвинов, Г.В. Пальчик, В.И. Уренев. ФТП, 24, 376 (1990).

[13] В.П. Маркевич, Л.И. Мурин. ФТП, 22, 1324 (1988).
[14] П.Ф. Лугаков, В.В. Лукьяница. ФТП, 24, 1721 (1990).

Редактор Т.А. Полянская

## Electrical active center formation in the electron irradiated silicon annealed in the temperature range of $400-700^{\circ}$ C

E.P. Neustroev, S.A. Stagulova, I.V. Antonova\*, L.N. Safronov\*

Yakutsk State University, 677897 Yakutsk, Russia \* Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia

**Abstract** Effect of the electron irradiation on thermal donor formation in silicon has been studied. Annealing at  $450^{\circ}$ C resulted in the formation of areas with *p*- and *n*-types of conductivity. An increase in the electron dose and in the annealing time leads to an increment in electron and hole concentrations.