Роль объемного заряда в формировании сопротивления биполярного полупроводникового образца

© А. Конин

Институт физики полупроводников, 2600 Вильнюс, Литва

(Получена 4 июля 2003 г. Принята к печати 2 июля 2003 г.)

В линейном приближении по концентрациям неравновесных носителей заряда получено выражение, описывающее не зависящее от протекающего тока сопротивление биполярного полупроводника (закон Ома). Показано, что отклонение сопротивления от классического обусловлено возникающем в полупроводнике объемным зарядом. В зависимости от соотношения приповерхностных проводимостей электронов и дырок сопротивление образца может стать как больше, так и меньше классического. Этот эффект максимален в образцах с малой поверхностной рекомбинацией, длина которых значительно меньше диффузионной длины.

1. Введение

В ряде физических задач, связанных с возникновением в полупроводнике неравновесных электронов и дырок (фотоэффект, инжекция носителей, эффект Холла и т.д.), принципиальную роль играет их рекомбинация. Выражения для темпов объемной рекомбинации были получены в [1] на основании модели Шокли-Рида [2] в линейном приближении по концентрациям неравновесных носителей. Предложенная в [1] модель рекомбинации была использована в [3] для вычисления сопротивления биполярного полупроводникового образца. Полученные в [4,5] и использованные в [3] граничные условия (ГУ) достаточны для вычисления констант интегрирования только в предположении квазинейтральности образца и не являются корректными по нескольким причинам. В [3] предполагается, что неравновесные концентрации электронов Δn и дырок Δp равны во всем объеме образца ($\Delta n = \Delta p$) — так называемое условие квазинейтральности. При этом выпадает из рассмотрения заряд, возникающий в приконтактной области полупроводника, толщина которой порядка дебаевской длины (дебаевский заряд). Кроме того, сокращается количество неизвестных — фактически неизвестной функцией является только неравновесная концентрация электроннодырочных пар (ЭДП). Для нахождения последней вполне достаточно известных ГУ [6], связывающие поток ЭДП со скоростью их рекомбинации на поверхности. ГУ в этом случае формулируются вне области приповерхностного дебаевского заряда [7] на некой квазиповерхности, а не реальной границе металл-полупроводник. Следствием квазинейтральности является также и то, что электрическое поле в образце однозначно определяется градиентом концентрации неравновесных ЭДП. При этом возникает новое противоречие — с одной стороны, электрическое поле является нелинейной функцией координаты образца, а с другой — согласно уравнению Пуассона, от координаты не зависит. Все эти противоречия можно устранить, если точно решить систему уравнений непрерывности [1] с учетом уравнения Пуассаона и использовать ГУ на реальной границе

металл-полупроводник. При этом автоматически будут учтены возникающие объемный диффузионный и приповерхностный дебаевский заряды и создаваемый ими электростатический потенциал.

Цель настоящей работы — нахождение сопротивления биполярного полупроводникового образца с учетом ГУ на реальной границе металл-полупроводник.

2. Теория

Рассмотрим полупроводниковый образец, имеющий форму параллелепипеда ($-a \le x \le a$, $0 \le y \le b$, $0 \le z \le d$), причем $a \ll b$, d. Вдоль оси x через образец пропущен постоянный электрический ток j_0 .

Распределение концентраций носителей и электростатического потенциала определяются уравнениями непрерывности [1]

$$\frac{1}{e}\frac{dj_n}{dx} - \frac{\Delta n}{\tau_n} - \frac{\Delta p}{\tau_p} = 0, \qquad (1)$$

$$\frac{1}{e}\frac{dj_p}{dx} + \frac{\Delta n}{\tau_n} + \frac{\Delta p}{\tau_p} = 0$$
(2)

и уравнением Пуассона

$$\frac{d^2 \Delta \varphi}{dx^2} = \frac{e}{\varepsilon \varepsilon_0} \left(\Delta n - \Delta p \right),\tag{3}$$

где j_n , j_p — плотности токов электронов и дырок, τ_n и τ_p — параметры полупроводника, имеющие размерность времени, но не являющиеся временами жизни электронов и дырок [1], Δn и Δp — неравновесные концентрации электронов и дырок, $\Delta \phi$ — неравновесный электростатический потенциал, (-e) — заряд электрона, ε — диэлектрическая проницаемость полупроводника, ε_0 — электрическая постоянная.

Уравнения (1) и (2) удовлетворяют, как и должно быть, закону сохранения заряда

$$\frac{d}{dx}\left(j_n+j_p\right)=0,$$

из которого следует, что

$$j_n + j_p = j_0 = \text{const.} \tag{4}$$

Сформулируем граничные условия для уравнений (1)-(3). Выражения для токов электронов и дырок в самом общем случае в линейном приближении по изменению электрического и химического потенциалов имеют вид

$$j_{n} = \sigma_{n} \left[-\frac{d}{dx} \left(\Delta \varphi - \frac{1}{e} \Delta F_{n} \right) \right],$$

$$j_{p} = \sigma_{p} \left[-\frac{d}{dx} \left(\Delta \varphi + \frac{1}{e} \Delta F_{p} \right) \right], \qquad (5)$$

где $\sigma_{n(p)}$ — электронная (дырочная) электропроводность полупроводника, $\Delta F_{n(p)}$ — изменение химических потенциалов электронов и дырок, обусловленное изменением их концентраций.

Для вывода граничных условий для потока дырок к поверхности x = a проинтегрируем (2) по x от $a - \delta$ до $a + \delta$ и устремим δ к нулю. Получаем

$$\frac{1}{e} \lim_{\delta \to 0} \int_{a-\delta}^{a+\delta} \frac{dj_p}{dx} dx + \lim_{\delta \to 0} \int_{a-\delta}^{a+\delta} \left(\frac{\Delta n}{\tau_n} + \frac{\Delta p}{\tau_p}\right) dx = 0.$$
(6)

Принимая во внимание, что $j_p(a + \delta) = 0$ (дырок в металле нет), окончательно находим

$$\frac{1}{e} j_p \big|_{x=a} = S_n^+ \Delta n \big|_{x=a} + S_p^+ \Delta p \big|_{x=a}, \tag{7}$$

где

$$S_{n,p}^{+} = \lim_{\delta \to 0} \int_{a-\delta}^{a} \frac{dx}{\tau_{n,p}}$$

параметры, характеризующие рекомбинационные свойства поверхности, но не являющиеся в строгом смысле этого слова скоростями поверхностной рекомбинации электронов и дырок. Аналогично для поверхности x = -a нахолим

$$\frac{1}{e} j_p \big|_{x=-a} = -S_n^- \Delta n \big|_{x=-a} - S_p^- \Delta p \big|_{x=-a}, \qquad (8)$$

где

$$S_{n,p}^{-} = \lim_{\delta \to 0} \int_{0}^{\delta} \frac{dx}{\tau_{n,p}}.$$

Поскольку условие (4) справедливо во всем объеме полупроводника и на его границе с металлом, дополнительные ГУ для j_n выводить не надо.

При выводе ГУ (11), (12) считалось, что поверхностные центры рекомбинации находятся в тонком приповерхностном слое, толщина которого значительно меньше длины Дебая (см. определение величин $S_{n,p}^{\pm}$). Таким образом, в отличие от ранее использовавшихся ГУ [3-5], в этой модели учитывается влияние приповерхностного дебаевского заряда на величину возникающей эдс через $\Delta n|_{x=\pm a}$ и $\Delta p|_{x=\pm a}$ на реальной границе металл-полупроводник.

Используем теперь фундаментальное условие (4), являющееся следствием закона сохранения заряда, для получения ГУ для неравновесных электрического и химического потенциалов. Для этого подставим (5) в тождество (4). Получаем

$$\frac{\sigma_n}{e}\frac{d\Delta F_n}{dx} - \frac{\sigma_p}{e}\frac{d\Delta F_p}{dx} - (\sigma_n + \sigma_p)\frac{d\Delta \varphi}{dx} = j_0.$$
(9)

Проинтегрируем (9) по *x* от $a - \delta$ до $a + \delta$ и устремим δ к нулю

$$\lim_{\delta \to 0} \int_{a-\delta}^{a+\delta} \frac{\sigma_n}{e} \frac{d\Delta F_n}{dx} dx - \lim_{\delta \to 0} \int_{a-\delta}^{a+\delta} \frac{\sigma_p}{e} \frac{d\Delta F_p}{dx} dx,$$

$$-\lim_{\delta \to 0} \int_{a-\delta}^{a+\delta} (\sigma_n + \sigma_p) \frac{d\Delta \varphi}{dx} - \lim_{\delta \to 0} \int_{a-\delta}^{a+\delta} j_0 dx = 0.$$
(10)

Последний интеграл в (10) равен нулю, так как подинтегральная функция конечна. Предпоследний интеграл в (10) может иметь конечное значение только при наличии скачка $\Delta \phi$ на границе. Напомним, что $\Delta \phi$ — это изменение потенциала, вызванное протеканием постоянного электрического тока *j*₀ через образец. Физической причиной, которая может привести к скачку $\Delta \phi$, является падение напряжения на конечном сопротивлении металл-полупроводник:

$$\Delta \varphi \big|_{x=\mp a} - \Delta \varphi_M \big|_{x=\mp a} = \pm \frac{j_0}{\sigma_s^{\mp}}, \tag{11}$$

где $\Delta \varphi_M$ — изменение электрического потенциала металлического контакта, σ_{S}^{\pm} — поверхностная электропроводность образца (размерность $\sigma_{S}^{\pm} - 1/\text{Om} \cdot \text{cm}^{2}$).

Учитывая постоянство химического потенциала металлического контакта, из (10) и (11) получаем

$$\frac{1}{e}\sigma_{p}^{+}\Delta F_{p}\big|_{x=a} - \frac{1}{e}\sigma_{n}^{+}\Delta F_{n}\big|_{x=a} - \frac{\sigma_{n}^{+} + \sigma_{p}^{+}}{\sigma_{S}^{+}}\,j_{0} = 0, \quad (12)$$

где $\sigma_{n,p}^+ = \lim_{x \to a = 0} \sigma_{n,p}$ — электропроводность электронов и дырок вблизи поверхности x = a со стороны полупроводника (приповерхностные электропроводности). Размерности приповерхностных электропроводностей $\sigma_{n,p}^+$ такие же, как и объемных — 1/Ом · см.

Аналогично для поверхности x = -a находим

$$\frac{1}{e}\sigma_{p}^{-}\Delta F_{p}\big|_{x=-a} - \frac{1}{e}\sigma_{n}^{-}\Delta F_{n}\big|_{x=-a} - \frac{\sigma_{n}^{-} + \sigma_{p}^{-}}{\sigma_{s}^{-}} j_{0} = 0, \quad (13)$$
rge $\sigma_{n,p}^{-} = \lim_{x \to -a+0} \sigma_{n,p}.$

Физика и техника полупроводников, 2004, том 38, вып. 3

Если поверхностная электропроводность на контакте металл-полупроводник достаточно велика (контакт омический), то (11) можно записать так:

$$\Delta \varphi_M \big|_{x=\pm a} = \Delta \varphi \big|_{x=\pm a}.$$
 (14)

Соотношение (14) тем более имеет место при $j_0 = 0$. В этом случае из (12) и (13) получаем

$$\sigma_n^{\pm} \Delta F_n \big|_{x=\pm a} = \sigma_p^{\pm} \Delta F_p \big|_{x=\pm a}.$$
 (15)

В дальнейшем граничные условия считаем симметричными: $S_{n(p)}^+ = S_{n(p)}^- = S_{n(p)}, \sigma_{n(p)}^+ = \sigma_{n(p)}^- = \sigma_{n(p)}^S$, а контакты — омическими. Решая уравнения (1)–(3) с граничными условиями (14), (15) и дополнительным условием (4), получаем

$$\Delta n = j_0 \frac{eF_0}{kT} \left[\operatorname{sh} \frac{x}{\lambda} + \frac{(\theta n_0/p_0 - 1)}{(1+\theta)} \frac{\operatorname{sh} x/r_D}{\operatorname{sh} a/r_D} \right], \quad (16)$$

$$\Delta p = j_0 \frac{eF_0}{kT} \left[\left(1 - \frac{(n_0 + p_0)(\mu_n - \mu_p)}{(n_0\mu_n + p_0\mu_p)} \frac{r_D^2}{\lambda^2} \right) \operatorname{sh} \frac{x}{\lambda} - \frac{p_0}{n_0} \frac{(\theta n_0/p_0 - 1)}{(1 + \theta)} \frac{\operatorname{sh} x/r_D}{\operatorname{sh} a/r_D} \right],$$
(17)

$$\Delta \varphi = j_0 F_0 \left[\frac{(\theta n_0 - p_0)}{n_0 p_0 (1 + \theta)} \frac{\operatorname{sh} x/r_D}{\operatorname{sh} a/r_D} + \frac{(\mu_n - \mu_p)}{(n_0 \mu_n + p_0 \mu_p)} \frac{\operatorname{sh} x/\lambda}{\operatorname{sh} a/\lambda} \right]$$

$$-j_0 \frac{\pi}{e(n_0\mu_n + p_0\mu_p)},$$
 (18)

где

$$F_{0} = \frac{\lambda}{D_{S}} \frac{p_{0}}{e\mu_{n}(n_{0} + p_{0})},$$

$$D_{S} = \operatorname{cth} \frac{a}{\lambda} + \frac{(n_{0} + p_{0})}{(1 + \theta)} \left(\frac{\nu_{n}}{p_{0}}\theta + \frac{\nu_{p}}{n_{0}}\right), \quad (19)$$

$$\lambda = \sqrt{\frac{kT}{e} \frac{(n_{0} + p_{0})\mu_{n}\mu_{p}}{(n_{0}\mu_{n} + p_{0}\mu_{p})}\tau}$$

— диффузионная длина,

$$r_D = \sqrt{\frac{\varepsilon \varepsilon_0 kT}{e^2 (n_0 + p_0)}}$$

— радиус Дебая, $\nu_{n,p} = S_{n,p} \tau / \lambda$, $\theta = \sigma_p^S / \sigma_n^S$, $\tau = \tau_n \tau_p / (\tau_n + \tau_p)$ — время жизни неравновесных электронно-дырочных пар (ЭДП) в объеме образца.

Из сравнения выражений (16), (17) видно, что в полупроводнике действительно возникает объемный заряд, который и приводит к перераспределению потенциала (член в квадратных скобках (18)).

Из (14) и (18) следует, что падение напряжения на образце $U = \Delta \varphi_M(-a) - \Delta \varphi_M(a)$ равно

$$U = j_0 \frac{2a}{e(n_0\mu_n + p_0\mu_p)} \left[1 - \frac{\lambda}{aD_s} \frac{(\theta n_0\mu_n - p_0\mu_p)}{n_0\mu_n(1+\theta)} \right].$$
(20)

Из уравнения (20) находим сопротивление образца

$$R = R_0 \left[1 - \frac{\lambda}{aD_s} \frac{(\theta n_0 \mu_n - p_0 \mu_p)}{n_0 \mu_n (1+\theta)} \right], \qquad (21)$$

где $R_0 = \frac{2a}{ebd(n_0\mu_n + p_0\mu_p)}$ — классическое сопротивление образца.

Заметим, что при $\sigma_{n(p)}^S = \sigma_{n(p)}$ сопротивление образца равно классическому значению вне зависимости от величин $S_{n,p}$ и толщины образца. Этот результат достаточно очевиден, так как в этом случае отсутствует физическая граница металл-полупроводник. С другой стороны, он является подтверждением правильности ГУ (14) и (15). Экспериментально такую ситуацию можно реализовать на образце "гантелеобразной" формы, вырезанном из кристалла полупроводника. При выводе (16)–(18) предполагалось, что диффузионная длина значительно больше радиуса Дебая.

3. Обсуждение результатов

Из (13) следует, что при интенсивной рекомбинации носителей ($S_{n,p} \gg \lambda/\tau$) на поверхностях $x = \pm a$ сопротивление образца равно классическому $R = R_0$, так как неравновесных носителей в образце нет.

Рассмотрим подробнее случай малой поверхностной рекомбинации носителей $S_{n,p} \ll \lambda/\tau$. При этом сопротивление образца равно

$$R = R_0 \left[1 - \frac{(\theta n_0 \mu_n - p_0 \mu_p)}{(1+\theta) n_0 \mu_n} \frac{\lambda}{a} \operatorname{th} \frac{a}{\lambda} \right].$$
(22)

В коротких образцах ($a \ll \lambda$) из (22) получаем

$$R = R_0 \frac{(n_0 \mu_n + p_0 \mu_p)}{n_0 \mu_n (1 + \theta)}.$$
 (23)

Из (23) следует, что при $\theta \ll 1$ $(\sigma_p^S \ll \sigma_n^S)$

$$R = \frac{2a}{ebdn_0\mu_n},\tag{24}$$

т.е. в этом случае сопротивление образца определяется только электронами и имеет максимальную величину. При $\theta \gg 1$ ($\sigma_p^S \gg \sigma_n^S$) из (23) получаем

$$R = \frac{2a}{ebdn_0\mu_n} \frac{\sigma_n^S}{\sigma_n^S},\tag{25}$$

т.е. сопротивление образца становится значительно меньше классического.

Рассмотрим подробно причины возникновения такого необычного эффекта. Как следует из (16), (17), неравновесные ЭДП в объеме (члены $\propto \sinh x/\lambda$) сносятся током j_0 от анода к катоду, поэтому их концентрация вблизи поверхности x = a положительна. Из граничного

Физика и техника полупроводников, 2004, том 38, вып. 3

Зависимость нормированного сопротивления образца Ge от его длины при различных значениях θ : I = 0.1, 2 = 1, 3 = 5. T = 310 K.

условия (12) с учетом омичности контактов получаем

$$\Delta n(a) = \frac{n_0}{p_0} \frac{\sigma_p^S}{\sigma_n^S} \Delta p(a),$$

а поскольку $\sigma_p^S \gg \sigma_n^S$, то $\Delta n(a) \gg \Delta p(a)$, причем концентрации неравновесных носителей положительны. Следовательно, у поверхности x = a на расстоянии дебаевского радиуса возникает отрицательный поверхностный заряд, а электростатический потенциал контакта повышается.

Из (18) получаем распределение электростатического потенциала в коротких образцах при малой поверхностной рекомбинации:

$$\Delta \varphi = -\frac{j_0}{e\mu_n(n_0 + p_0)} \left[x - a \frac{(\theta - p_0/n_0)}{(1 + \theta)} \frac{\sinh x/r_D}{\sinh a/r_D} \right].$$
(26)

Из (26) следует, что при $\theta \ll 1$ φ — монотонно уменьшающаяся функция x, а электрическое поле положительно во всех точках образца. При $\theta \gg 1$ φ — немонотонная функция x, имеющая экстремумы на расстояниях $r_D \ln a/r_D$ от поверхностей образца, в результате чего электрическое поле в приповерхностных областях становится отрицательным.

На рисунке представлена зависимость сопротивления образца собственного Ge (T = 310 K, $\lambda = 0.1$ см, $\mu_n = 3800 \text{ см}^2/\text{B} \cdot \text{c}$, $\mu_p = 1800 \text{ см}^2/\text{B} \cdot \text{c}$) от его длины при различных отношениях приповерхностных проводимостей θ в случае $S_{n,p} \ll \lambda/\tau$. Как видим, сопротивление существенным образом зависит от величины θ , особенно в коротких образцах.

4. Заключение

Показано, что при симметричных граничных условиях отклонение сопротивления от классического обусловлено возникающим в полупроводнике объемным зарядом. Объемный заряд формируется не только на дебаевском радиусе от поверхности образца, но и на диффузионной длине. В зависимости от соотношения приповерхностных проводимостей электронов и дырок сопротивление образца может стать как больше, так и меньше классического. Этот эффект максимален в образцах, поверхностная рекомбинация которых достаточно мала, а длина — значительно меньше диффузионной.

Список литературы

- [1] И.Н. Воловичев, Ю.Г. Гуревич. ФТП, 35, 321 (2001).
- [2] W. Shockley, W.T. Read. Phys. Rev., 87, 835 (1952).
- [3] Ю.Г. Гуревич, Г.Н. Логвинов, Г. Эспехо, О.Ю. Титов, А. Мериуц. ФТП, 34, 783 (2000).
- [4] Yu.G. Gurevich. J. Thermoelectricity, № 2, 5 (1997).
- [5] O.Yu. Titov, J. Giraldo, Yu.G. Gurevich. Appl. Phys. Lett., 80, 3108 (2002).
- [6] Г.Е. Пикус. ЖТФ, 26, 22 (1956).
- [7] Г.П. Пека. Физические явления на поверхности полупроводников (Киев, Вища шк., 1984).

Редактор Л.В. Беляков

The role of bulk charge in formation of the resistance of a bipolar semiconductor

A. Konin

Semiconductor Physics Institute, 2600 Vilnius, Lithuania

Abstract The expression for the resistance of a bipolar semiconductor in linear approximation under non-equilibrium electron and hole densities is obtained. It is shown that the deviation of resistance from its classical value is conditioned by a bulk charge, which arises in the sample. The resistance of semiconductor sample can be greater or smaller than its classical value being the function of electron-hole electrical conductivity near the surface. This effect has a maximum value in the samples with ineffective surface recombination, when the sample length is smaller than the diffusion length.