# Влияние предварительного легирования и режимов имплантации на диффузию кремния в GaAs при радиационном отжиге

© М.В. Ардышев<sup>¶</sup>, В.М. Ардышев, Ю.Ю. Крючков\*

Сибирский физико-технический институт им. В.Д. Кузнецова при Томском государственном университете, 634050 Томск, Россия \* Томский политехнический университет, 634050 Томск, Россия

(Получена 16 мая 2003 г. Принята к печати 3 июня 2003 г.)

Методами вольт-фарадных характеристик и резерфордовского обратного рассеяния исследованы диффузионные параметры кремния <sup>28</sup>Si при диффузии из предварительно созданных *n*-слоев в полуизолирующий GaAs при "электронном" и термическом отжигах. Слои были легированы серой или кремнием. Отмечается, что степень активации <sup>28</sup>Si и коэффициент диффузии зависят от лигатуры, используемой при формировании *n*-слоя, и от режима имплантации (непрерывный или частотно-импульсный с длительностью импульса  $1.3 \cdot 10^{-2}$  с и скважностью 100).

## 1. Введение

В работе [1] отмечается, что при радиационном отжиге GaAs, имплантированного <sup>28</sup>Si, наблюдается диффузионное перераспределение примеси в глубь полупроводника. Показано, что этот процесс обусловлен снижением потенциальных барьеров миграции и активации кремния и зависит от условий на поверхности полупроводника [2], от степени дефектности исходного материала [3]. На диффузию примесей часто оказывают влияние внутренние электрические поля, режимы имплантации (в частности, известна зависимость коэффициента диффузии от дозы имплантации примесей). В этой связи в работе исследовали диффузию кремния в GaAs при "электронном отжиге" (ЭО) из предварительно созданных *n*-слоев в материал с собственным типом проводимости.

### 2. Методика экспериментов

Исследования выполнены на пластинах монокристаллического полуизолирующего GaAs с удельным сопротивлением более 10<sup>7</sup> Ом · см, с плотностью дислокаций не более 5 · 10<sup>4</sup> см<sup>-2</sup> и на эпитаксиальных структурах *n*-*n<sub>i</sub>*-типа с концентрацией электронов в n-слое  $\sim 1.1 \cdot 10^{17} \, \mathrm{cm}^{-3}$  и толщиной  $\sim 0.22 \, \mathrm{мкм}$ . Эпитаксиальные слои были легированы серой и получены газотранспортным методом на подложках полуизолирующего GaAs. Пластины были ориентированы в плоскости (100). После обработки пластин в травителе H<sub>2</sub>SO<sub>4</sub>:H<sub>2</sub>O<sub>2</sub>:H<sub>2</sub>O = 1:1:100 проводили имплантацию ионов <sup>28</sup>Si при комнатной температуре в частотноимпульсном (длительность импульса 1.3 · 10<sup>-2</sup> с, скважность 100) и непрерывном режимах последовательно с энергией 50 кэВ, дозой 5.62 · 10<sup>12</sup> см<sup>-2</sup> и с энергией 75 кэВ, дозой  $1.88 \cdot 10^{12}$  см<sup>-2</sup>, а также с энергией

100 кэВ, дозой  $1 \cdot 10^{14}$  см<sup>-2</sup> (монокристаллический материал) и с энергией 50 кэВ, дозой  $5 \cdot 10^{13}$  см<sup>-2</sup>, а затем с энергией 100 кэВ, дозой  $5.62 \cdot 10^{12}$  см<sup>-2</sup> (эпитаксиальный материал). Плотность тока ионов не превышала 0.1 мкА · см<sup>-2</sup>. При имплантации принимали меры для исключения осевого и плоскостного каналирования, как в [4]. После имплантации по способу [5] на поверхность пластин наносили пленку SiO<sub>2</sub>:Sm из пленкообразующего раствора толщиной 0.1–0.2 мкм. Электронный отжиг проводили в установке "Модуль" (ИСЭ ТФ РАН, г. Томск) с энергией электронов в пучке 10 кэВ, с плотностью мощности 8.2 Вт · см<sup>-2</sup> в течение 10–16 с в вакууме  $10^{-5}$  Па. Термический отжиг выполняли при температуре 800°С в течение 30 мин.

После формирования вблизи поверхности GaAs слоев *n*-типа проводимости пластины делили на две части. Вторые части пластин подвергали дополнительному ЭО.

После отжига и удаления диэлектрика измеряли концентрационные профили электронов методом вольтфарадных характеристик, как в [1]. С помощью метода резерфордовского обратного рассеяния каналированных ионов (РОРКИ) гелия с энергией частиц 1.86 МэВ определяли дефектность материала после имплантации и после отжига. Экспериментальные профили легирования обрабатывали с помощью выражения [6]

$$n(x,t) = \frac{\eta F}{\sqrt{2\pi\sigma}} \exp\left[-\frac{(x-R_p)^2}{2\sigma^2}\right],$$
 (1)

где  $\sigma^2 = \Delta R_p^2 + 2Dt$  — дисперсия концентрационного профиля; *F*, *R<sub>p</sub>* и  $\Delta R_p$  — доза имплантации, пробег и страгтлинг пробегов ионов соответственно; *D* и  $\eta$  коэффициент диффузии и степень электроактивации примеси соответственно; *x* — координата; *t* — время.

При использовании выражения (1) предполагалось, что отсутствует диффузия примеси через границу полупроводника и что экспериментальный профиль можно описать аналитически. В случае профилей, не имеющих аналитического представления, коэффициент диффузии

<sup>¶</sup> E-mail: ard.rff@elefot.tsu.ru, detector@mail.tomsknet.ru

определяли методом Больцмана-Мотано (см., например, [7]):

$$D_i = -N_i (x_i - R_p) \left[ 2t \frac{dN}{dx} \Big|_{x=x_i} \right]^{-1}, \qquad (2)$$

где  $N_i$  и  $dN/dx|_{x=x_i}$  — концентрация и градиент концентрации примеси на глубине  $x_i$  соответственно.

## Экспериментальные результаты и их обсуждение

#### 3.1. Влияние предварительного легирования

На рис. 1 представлены экспериментальные профили концентрации электронов в исходной структуре, после имплантации кремния и электронного отжига, а также расчетный профиль внедренного кремния. Видно, что с увеличением длительности ЭО возрастает глубина, на которую мигрирует кремний (кривые 3 и 4). Причем на концентрационных профилях можно выделить два участка: до глубины  $x \approx 1100 \,\text{\AA}$  и после этой глубины. При x < 1100 Å не происходит перераспределения примеси и электронов относительно профиля внедренного кремния для обеих длительностей отжига (кривая 2). Максимум концентрации электронов n<sub>max</sub> в слоях и степень электроактивации примеси  $\eta$  лежат в диапазонах  $(4-5) \cdot 10^{17} \, \text{см}^{-3}$  и 4.3–4.6% соответственно (кривые 3 и 4). При x > 1100 Å диффузионные и активационные параметры профилей легирования для длительностей отжига 10 и 16 с различаются (табл. 1).

Отличаются они и от результатов отжига имплантированного полуизолирующего GaAs, в частности значение  $\eta$  более чем в 2 раза, а коэффициент диффузии на порядок меньше. Следует также отметить, что при ЭО в течение 10 с значение  $D/t \cong 4.3 \cdot 10^{-14} \text{ см}^2 \text{ c}^{-2}$ , что больше, чем при отжиге в течение 16 с  $(D/t \cong$  $\cong 3.5 \times 10^{-14} \text{ см}^2 \text{ c}^{-2})$ , т.е. имеет место уменьшение коэффициента в единицу времени в среднем на 20%. Обращает на себя внимание также тот факт, что после ЭО в измеренных концентрационных профилях (кривые 3 и 4) отсутствует "ступенька" — исходное (до отжига) распределение электронов по глубине (кривая 1). Так как легирующей примесью в *n*-слое эпитаксиальной

**Таблица 1.** Характеристики концентрационных профилей электронов в  $n-n_i$ -GaAs: S после имплантации <sup>28</sup>Si и ЭО с различной длительностью (x > 1100 Å)

| Время<br>отжига, с | $n_{\rm max}$ , cm <sup>-3</sup> | η, %   | $\sigma^2$ , Å <sup>2</sup> | $D,  \mathrm{cm}^2  \mathrm{c}^{-1}$ |
|--------------------|----------------------------------|--------|-----------------------------|--------------------------------------|
| 10                 | $1.42\cdot 10^{17}$              | 34     | $2.9\cdot 10^5$             | $4.33\cdot 10^{-13}$                 |
| 16                 | $3.9\cdot10^{17}$                | 42     | $3.84\cdot 10^5$            | $5.64 \cdot 10^{-13}$                |
| 10*                | Нет данных                       | $78^*$ | Нет данных                  | $(2.0\pm0.2)\cdot10^{-12*}$          |

Примечание. Параметры, отмеченные звездочкой (\*), взяты из [1] и относятся к миграции <sup>28</sup>Si из слоя внедрения не в эпитаксиальной структуре, а в полуизолирующем GaAs.



**Рис. 1.** Профили концентрации внедренного кремния при непрерывном режиме имплантации примеси в эпитаксиальную структуру  $n-n_i$ -типа: 1 — исходный профиль электронов в *n*-слое; 2 — расчетный профиль для режима имплантации 50 кэВ,  $5 \cdot 10^{13}$  см<sup>-2</sup> + 100 кэВ,  $5.62 \cdot 10^{12}$  см<sup>-3</sup>; профили концентрации электронов, полученные после электронного отжига в течение 10 с (3) и 16 с (4).

структуры является сера, то, вероятно, в процессе имплантации и ЭО происходит перераспределение серы в направлении к поверхности в область с высокой концентрацией радиационных дефектов (РД). Возможно также, что в процессе отжига наряду с кремнием в глубь полупроводника мигрируют РД, в частности вакансии галлия  $V_{Ga}$ , с которыми, как известно, сера образует нейтральные комплексы. Если предположить, что сера связывает часть  $V_{Ga}$  в нейтральные комплексы, то это должно приводить, с одной стороны, к уменьшению степени электроактивации кремния в слоях до и после глубины 1100 Å, а с другой — к уменьшению коэффициента диффузии <sup>28</sup>Si, если кремний диффундирует по вакансиям галлия. Это и наблюдается в эксперименте (табл. 1, рис. 1).

На рис. 2 приведены экспериментальные профили концентрации электронов после имплантации кремния и последовательно проведенных электронных отжигов, а также расчетный профиль внедренного кремния. В табл. 2 представлены параметры концентрационных профилей легирования.

Видно, что после второго ЭО наблюдается несколько более глубокое проникновение кремния в GaAs (рис. 2) и возрастает концентрация и степень электроактивации примеси по сравнению с первым ЭО. Коэффициент диффузии увеличивается незначительно, хотя миграция кремния происходит из слоя *n*-типа проводимости в собственный GaAs, т.е. фактически в электрическом поле  $n-n_i$ -перехода. Изгиб зон на границе этого перехода приводит к образованию встроенного отрицательного заряда со стороны собственного GaAs, который нейтрализуется в *n*-слое. В этой отрицательной области *n*-*n<sub>i</sub>*-перехода возможна аккумуляция V<sub>Ga</sub>, которые, как известно [8], могут нести единичный, двойной или тройной отрицательный заряд. Увеличение концентрации V<sub>Ga</sub> должно приводить к увеличению коэффициента диффузии D в соответствии с соотношением [8]

$$D_{\rm eff} = D_0 + D_- \left(\frac{n}{n_i}\right) + D_{2-} \left(\frac{n}{n_i}\right)^2 + D_{3-} \left(\frac{n}{n_i}\right)^3, \quad (3)$$

где индексы при соответствующих коэффициентах обозначают заряд вакансий.

Необходимо отметить, что уравнение (3) справедливо лишь в предположении, что концентрация носителей заряда всегда определяется только концентрацией заряженных вакансий.



**Рис. 2.** Профили концентрации внедренного кремния при непрерывном режиме имплантации примеси в полуизолирующий GaAs: I — расчетный профиль для режима имплантации 50 кэВ,  $5.62 \cdot 10^{13}$  см<sup>-2</sup> + 75 кэВ,  $1.88 \cdot 10^{12}$  см<sup>-3</sup>; профили концентрации электронов, полученные после первого (2) и второго (3) электронного отжигов в течение 10 с.

Таблица 2. Основные диффузионные параметры кремния в полуизолирующем GaAs после ЭО в течение 10 с

| Отжиг                  | $n_{\rm max}$ , cm <sup>-3</sup>                                        | η, %         | $\sigma^2$ , Å <sup>2</sup>                                         | $D,  \mathrm{cm}^2  \mathrm{c}^{-1}$                                      |
|------------------------|-------------------------------------------------------------------------|--------------|---------------------------------------------------------------------|---------------------------------------------------------------------------|
| Первый ЭО<br>Второй ЭО | $\begin{array}{c} 2.24 \cdot 10^{17} \\ 2.59 \cdot 10^{17} \end{array}$ | 54.2<br>76.0 | $\begin{array}{c} 5.275 \cdot 10^5 \\ 7.753 \cdot 10^5 \end{array}$ | $\begin{array}{c} 1.88 \cdot 10^{-12} \\ 3.12 \cdot 10^{-12} \end{array}$ |

Однако к рассматриваемым процессам нужно относиться с большой осторожностью. Дело в том, что при воздействии электронов в материале генерируются неравновесные носители заряда и ионизованные атомы матрицы полупроводника в концентрации  $\sim 10^{19} \,\mathrm{cm}^{-3}$  [9]. Расчеты, выполненные по методике [10], показали, что для использованной в работе энергии электронов (100 кэВ) толщина ионизированного слоя значительно больше глубины залегания *n*-*n<sub>i</sub>*-перехода. Поэтому исследуемые процессы осуществляются в сильно ионизованном материале. Наблюдаемые эффекты обусловлены не столько влиянием электрического поля *n*-*n<sub>i</sub>*-перехода, потенциал которого при температуре отжига не превышает 0.5 эВ, сколько ионизационнотермическим уменьшением высоты барьеров миграции и электроактивации примеси [1], как в случае первого ЭО. На это указывает, в частности, близость значений коэффициентов диффузии (табл. 2) для обеих длительностей отжига.

#### 3.2. Влияние режимов имплантации

На рис. 3, *а*, *b* приведены концентрационные профили электронов после термического и последующего электронного отжигов для двух режимов имплантации. Здесь также представлен профиль концентрации внедренного кремния. В табл. 3 представлены значения коэффициентов диффузии кремния после отжигов.

Таблица 3. Коэффициенты диффузии кремния в полуизолирующем GaAs для различных режимов имплантации после термического и последующего электронного отжигов

| Режим имплантации                  | Коэффициент диффузии, см $^2 c^{-1}$            |                                                                       |  |  |
|------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------|--|--|
|                                    | ТО                                              | ЭО                                                                    |  |  |
| Непрерывный<br>Частотно-импульсный | $\frac{1.6 \cdot 10^{-15}}{3.0 \cdot 10^{-15}}$ | $\begin{array}{c} 4.5\cdot 10^{-13} \\ 3.1\cdot 10^{-12} \end{array}$ |  |  |

Из рис. 3 и табл. 3 следует, что после ТО и особенно после ЭО слоев, полученных имплантацией кремния в частотно-импульсном режиме, перераспределение примеси более значительно по сравнению с непрерывным режимом имплантации, на что указывают значения коэффициентов *D*. Величина *D* после ЭО практически совпадает со значениями, приведенными в табл. 2. Наиболее вероятная причина наблюдаемых различий в поведении



**Рис. 3.** Профили концентрации внедренного кремния при непрерывном (*a*) и частотно-импульсном (*b*) режимах имплантации примеси в полуизолирующий GaAs: I — расчетный профиль для режима имплантации 100 кэB,  $1 \cdot 10^{14}$  см<sup>-2</sup>; профили концентрации электронов, полученные после термического отжига (*2*) и последующего электронного отжига (*3*).

<sup>28</sup>Si для исследуемых режимов имплантации связана с различной дефектностью материала как после внедрения примеси, так и после термического отжига.

Видно, что после имплантации (рис. 4, табл. 4) в непрерывном режиме степень дефектности материала существенно больше по сравнению с частотно-

Таблица 4. Степень дефектности GaAs после имплантации и после термического отжига

|                                        | После имплантации  |                    |                    | тации                                   | После ТО                                         |                                                                                   |
|----------------------------------------|--------------------|--------------------|--------------------|-----------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------|
| Режим<br>имплантации                   | $\chi^{ex}_{\min}$ | $\chi^{in}_{\min}$ | $\chi^{th}_{\min}$ | N <sub>d</sub> /N <sub>0</sub> ,<br>ат% | N <sub>d</sub> /N <sub>0</sub> ,<br>ат%          | <i>N<sub>d</sub></i> / <i>N</i> <sub>0</sub> , ат%<br>(после удале<br>ния 1500 Å) |
| Непрерывный<br>Частотно-<br>импульсный | 0.29<br>0.13       | 0.06<br>0.06       | 0.035<br>0.035     | 25<br>8                                 | $\sim \begin{array}{c} 0.10 \\ 0.00 \end{array}$ | $\sim \begin{array}{c} 0.09 \\ 0.00 \end{array}$                                  |

На рис. 4 приведены спектры резерфордовского обратного рассеяния для образцов GaAs. В табл. 4 представлены значения минимального выхода  $\chi_{min}$  и степень дефектности материала. Рассчитывалась относительная концентрация дефектов в имплантированном слое [11]:

$$\frac{N_D}{N_0} = \frac{\chi_{\min}^{ex} - \chi_{\min}^{in}}{1 - \chi_{\min}^{in}},\tag{4}$$

где  $N_D$ ,  $N_0$  — концентрация дефектов и атомная плотность GaAs соответственно;  $\chi_{\min}^{in}$  и  $\chi_{\min}^{ex}$  — значение  $\chi_{\min}$  до и после имплантации соответственно. Область интегрирования для расчета  $\chi_{\min}^{ex}$  была выбрана за пиком дефектов на глубине  $R_p + 2\Delta R_p$ . В табл. 4 также приведены значения теоретического  $\chi_{\min}^{th}$  выхода ионов гелия.



**Рис. 4.** Энергетические спектры ионов гелия (E = 1.86 МэВ), рассеянных кристаллом (100) GaAs, имплантированного кремнием с энергией 100 кэВ дозой  $10^{14}$  см<sup>-2</sup> с плотностью тока 0.1 мкА · см<sup>-2</sup> при 300 К в непрерывном (3) и частотно-импульсном (4) режимах. I — исходный осевой; 2 — исходный рандомный.

Физика и техника полупроводников, 2004, том 38, вып. 3

импульсным режимом, хотя энергия, доза, плотность ионного тока и температура внедрения кремния были одинаковыми. После отжига (табл. 4) дефекты отжигаются не полностью, причем удаление с поверхности слоя полупроводника толщиной 1500 Å практически не изменяет остаточную дефектность в материале. Последнее обстоятельство указывает на то, что дефекты проникают за пределы имплантированного слоя. Из сопоставления результатов, приведенных в табл. 3 и 4, можно сделать вывод о том, что остаточные дефекты после непрерывной имплантации и ТО выступают в качестве ловушек для кремния, препятствуя его миграции в глубь GaAs. Эти дефекты не отжигаются и при последующем ЭО. Учитывая результаты работ [1-3], можно также констатировать, что этот эффект проявляется при сравнительно больших дозах имплантации ( $\geq 10^{14} \, \mathrm{cm}^{-2}$ ), так как в цитируемых работах они составляли  $\sim 10^{13} \, {\rm cm}^{-2}$ .

## 4. Заключение

1. Электронный отжиг эпитаксиальных структур GaAs: S  $n-n_i$ -типа, предварительно легированных кремнием <sup>28</sup>Si в непрерывном режиме дозой  $\leq 5 \cdot 10^{13}$  см<sup>-2</sup>, приводит к уменьшению коэффициента диффузии кремния и к снижению степени электроактивации примеси по сравнению с аналогичными характеристиками диффузии при электронном отжиге имплантированного <sup>28</sup>Si полуизолирующего GaAs.

2. При дополнительном электронном отжиге структуры  $n-n_i$ -типа, в которой *n*-слой создан имплантацией <sup>28</sup>Si в непрерывном режиме дозой <  $10^{13}$  см<sup>-2</sup> и электронным отжигом, коэффициент диффузии примеси увеличивается незначительно по сравнению с первым отжигом, хотя миграция кремния осуществляется в поле  $n-n_i$ -перехода. При этом степень электроактивации кремния возрастает примерно в 1.5 раза.

3. При частотно-импульсной имплантации <sup>28</sup>Si (длительность импульса  $1.3 \cdot 10^{-2}$  с, скважность 100) дозой  $10^{14}$  см<sup>-2</sup> и последующем термическом отжиге в GaAs образуется существенно меньшая концентрация остаточных дефектов по сравнению с непрерывным режимом облучения. Дефектный слой простирается в глубь GaAs на глубину, превышающую толщину *n*-слоя после термического отжига. Наличие этого слоя уменьшает коэффициент диффузии кремния как при термическом, так и при электронном отжигах. При этом в последнем случае диффузия происходит в поле *n*-*n<sub>i</sub>*-перехода.

Работа поддержана грантом РФФИ № 02-02-16280.

## Список литературы

- [1] М.В. Ардышев, В.М. Ардышев. ФТП, 32, 1153 (1998).
- [2] М.В. Ардышев, В.М. Ардышев, С.С. Хлудков. ФТП, **34**, 70 (2000).

- [3] М.В. Ардышев, В.М. Ардышев, С.С. Хлудков. ФТП, **34**, 28 (2000).
- [4] М.В. Ардышев, В.М. Ардышев. Изв. вузов. Физика, 41 (11), 44 (1998).
- [5] В.М. Ардышев, В.А. Селиванова, О.Н. Коротченко, А.П. Мамонтов. А.с. № 235899 от 01.04.1986.
- [6] Х. Риссел, И. Руге. Ионная имплантация (М., Наука, 1983).
- [7] A. Bakowski. J. Electrochem. Soc.: Sol. St. Sci. and Technol., 127, 1644 (1980).
- [8] E.L. Allen, M.D. Deal, J.D. Plummer. J. Appl. Phys., **67**, 3311 (1990).
- [9] М.В. Ардышев, В.М. Ардышев, С.С. Хлудков. Тр. 5-й Межд. конф. "Актуальные проблемы электронного приборостроения «АПЭП-2000»" (Новосибирск, Россия, 2000) т. 2, с. 119.
- [10] Н.А. Аброян, А.Н. Андронов, А.И. Титов. Физические основы электронной и ионной технологии (М., Высш. шк., 1984).
- [11] Дж. Мейер, Дж. Эриксон. Ионное легирование полупроводников (М., Мир, 1973).

Редактор Л.В. Беляков

# Effect of pre-doping and implantation regime on silicon diffusion in gallium arsenide subject to radiation annealing

M.V. Ardyshev, V.M. Ardyshev, Yu.Yu. Krjuchkov\*

Kuznetsov Siberian Physicotechnical Institute, 634050 Tomsk, Russia \* Tomsk Polytechnical University, 634050 Tomsk, Russia

**Abstract** Using voltage-capacitance and Rutherford backscattering techniques, parameters of silicon diffusion from preformed *n*-type layers to semiinsulating GaAs, caused by electron-beam annealing and conventional thermal treatment, have studied in the work. The layers were doped either with sulphur or silicon. A degree of <sup>28</sup>Si electrical activation and diffusion coefficient are found to depend upon dopant, which was utilized for shaping the layer, and upon implantation regime (continuous or pulse-frequency with duration of pulse  $1.3 \cdot 10^{-2}$  s and the on-off time ratio 100).