Фоточувствительные структуры на основе соединения $AgIn_{11}S_{17}$

© И.В. Боднарь[¶], Г.А. Ильчук⁺, В.Ю. Рудь^{*¶¶}, Ю.В. Рудь⁺

Белорусский государственный университет информатики и радиоэлектроники,

* Санкт-Петербургский государственный политехнический университет,

195251 Санкт-Петербург, Россия

⁺ Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

(Получена 9 апреля 2003 г. Принята к печати 21 апреля 2003 г.)

Методом Бриджмена (горизонтальный вариант) выращены кристаллы тройного соединения AgIn₁₁S₁₇. Проведены измерения кинетических коэффициентов и впервые созданы фоточувствительные структуры на основе полученных кристаллов. Определены фотоэлектрические параметры твердотельных поверхностно-барьерных структур и фотоэлектрохимических ячеек, оценена ширина запрещенной зоны для соединения AgIn₁₁S₁₇ и обсуждается характер межзонных переходов в этом соединении. Показано, что разработанные структуры могут применяться в фотодетекторах естественного излучения.

1. Введение

Детальные исследования в системах соединений $A^{I}-B^{III}C^{VI}$ привели к тому, что наряду с достаточно широко известными тройными соединениями $A^{I}B^{III}C_{2}^{VI}$ появились сведения о существовании целого ряда полупроводниковых фаз типа $A^{I}B_{m}^{III}C_{m}^{VI}$, где *n* и *m* — натуральные числа [1–5]. Анализ взаимодействия в этих системах показал, что при изменении их состава возникают области стабильности позиционно упорядоченных фаз, когда изменение индексов *n* и *m* приводит к образованию новых полупроводниковых соединений [5]. Новые вещества, как и соединения $A^{I}B^{III}C_{2}^{VI}$ [6,7], могут оказаться перспективными материалами при решении проблем современной оптоэлектроники и солнечной фотоэнергетики.

В настоящей работе представлены результаты исследования физических свойств нового полупроводникового соединения AgIn₁₁S₁₇ и структур на его основе.

2. Экспериментальная часть

Кристаллы тройного соединения AgIn₁₁S₁₇ выращивали направленной кристаллизацией расплава (горизонтальный вариант метода Бриджмена). Металлические компоненты серебро и индий марки *B*4 (в кварцевой лодочке) и сера — *B*5 находились в разных частях вакуумированной кварцевой ампулы. Серу брали с избытком относительно стехиометрии, необходимым для создания паров над образовавшимся расплавом с давлением 1.5–2.0 атм. Ампулу размещали в двухзонной горизонтальной печи с независимо регулируемыми зонами. Температуру зоны с металлическими компонентами поддерживали на уровне ~ 1380 К. Температуру зоны, где находилась сера, повышали со скоростью 50 К/ч до 700 К, затем выдерживали 2 ч для протекания химической реакции между серебром, индием и серой. Для более полного протекания указанной реакции температуру этой зоны повышали с той же скоростью до $\sim 800 \, {\rm K}$ с повторной выдержкой 1 ч. После этого проводили направленную кристаллизацию путем понижения температуры расплава со скоростью $\sim 3 \, {\rm K/v}$ до 1000 K и при этой температуре осуществляли гомогенизирующий отжиг образовавшихся кристаллов в течение 300 ч. Полученные кристаллы были крупноблочными с размером отдельных блоков $15 \times 8 \times 5 \, {\rm Mm}^3$.

Состав выращенных кристаллов определяли с помощью химического анализа по методикам, предложенным в работах [8–10]. Содержание элементов в полученных кристаллах (Ag : In : S = 3.54 : 37.78 : 58.68 ат% соответственно) удовлетворительно согласуется с заданным составом в исходной шихте (Ag : In : S = 3.45 : 37.83 : 58.72 ат%). Распределение элементов по длине кристалла в пределах погрешности измерений является однородным.

Структуру и параметры элементарной ячейки полученных кристаллов устанавливали с помощью рентгеновского анализа. Рентгеновские измерения проводили на дифрактометре ДРОН–3М в Си K_{α} -излучении с Ni-фильтром. Дифрактограммы, измеренные на разных частях кристалла, соответствовали кубической структуре типа шпинели с параметром элементарной ячейки $a = 10.797 \pm 0.002$ Å.

Кристаллы AgIn₁₁S₁₇ по знаку термоэдс имели *п*-тип проводимости с удельным сопротивлением $\rho \approx (2-5) \cdot 10^{-2}$ Ом · см, концентрацией носителей заряда $n \approx (3-5) \cdot 10^{18}$ см⁻³ и подвижностью $\mu_n \approx 30-40$ см²/(В·с) при T = 300 К для образцов, вырезанных из разных участков слитка.

3. Экспериментальные результаты и их обсуждение

Итогом исследований контактных явлений на выращенных кристаллах $AgIn_{11}S_{17}$ явилось обнаружение выпрямляющих и фотовольтаических свойств контакта

²²⁰⁰⁷² Минск, Белоруссия

¹⁹⁴⁰²¹ Санкт-Петербург, Россия

[¶] E-mail: chemzav@gw.bsuir.unibel.by

^{¶¶} E-mail: rudvas@spbstu.ru

Рис. 1. Спектральная зависимость относительной квантовой эффективности фотопреобразования структуры In/AgIn₁₁S₁₇ при 300 К. Освещение структуры производилось со стороны барьерного контакта.

тонких слоев металлического индия ($d \approx 1-3$ мкм) с поверхностью естественного скола. В табл. 1 приведены параметры впервые созданных поверхностно-барьерных структур In/AgIn₁₁S₁₇. Как показали измерения стационарных вольт-амперных характеристик (BAX), указанные структуры обладают выпрямлением, причем пропускному направлению отвечает отрицательная полярность внешнего смещения на полупроводнике. Коэффициент выпрямления (K) в этих структурах, определенный как отношение прямого и обратного токов при напряжениях $U \approx 0.5$ В, оказался невысоким и составляет ~ 5 . Прямая ветвь ВАХ полученных структур при U > 0.3 В подчиняется закону

$$U = U_0 + IR_0. \tag{1}$$

Величина остаточного сопротивления R_0 полученных структур приведена в табл. 1, а напряжение отсечки $U_0 \approx 0.4$ В.

При освещении таких структур наблюдается фотовольтаический эффект с положительной полярностью фотонапряжения на барьерном контакте, что согласуется с направлением выпрямления. Максимальная величина вольтовой фоточувствительности (S_u^{max}) для лучших поверхностно-барьерных структур приведена в табл. 1. Для полученных барьеров In/AgIn₁₁S₁₇ максимальное фотонапряжение достигается при их освещении со стороны индиевого контакта.

На рис. 1 приведена спектральная зависимость относительной квантовой эффективности фотопреобразования $\eta(h\omega)$ для структуры In/AgIn₁₁S₁₇ при T = 300 К при ее освещении со стороны барьерного контакта. Видно, что представленная зависимость $\eta(\hbar\omega)$ для таких структур имеет вид кривых с максимумом при энергии фотонов $\hbar\omega_{max}$. Быстрый рост фоточувствительности начинается при энергии $\hbar\omega \approx 0.9$ эВ, причем длинноволновый край этих спектров подчиняется закону Фаулера [11] (рис. 2) и его можно связать с фотоэмиссией. Экстраполяция зависимости $\eta^{1/2}(\hbar\omega)$ к нулю позволяет определить высоту энергетического барьера φ_b для структур In/AgIn₁₁S₁₇. Значение φ_b для указанных структур приведено в табл. 1.

Таблица 1. Фотоэлектрические свойства поверхностнобарьерной структуры на основе соединения $AgIn_{11}S_{17}$ при 300 К

Структура	<i>R</i> ₀ , Ом	$\hbar\omega_{\max}, \Im B$	$\varphi_b,$ эВ	δ , эВ	$S_u^{\max}, B/BT$
In/AgIn ₁₁ S ₁₇	75	1.57	0.82	0.6	0.02

Следует также отметить и вторую особенность спектральной зависимости $\eta(\hbar\omega)$ для полученной поверхностно-барьерной структуры: наличие достаточно резкого коротковолнового спада фоточувствительности, который проявляется как при освещении структур со стороны барьерного контакта, так и со стороны кристалла.

Рис. 2. Зависимость $\eta^{1/2} = f(\hbar \omega)$ для поверхностно-барьерной структуры In/AgIn₁₁S₁₇ при 300 K.

Таблица 2. Фотоэлектрические свойства структуры $H_2O/AgIn_{11}S_{17}$ и энергии межзонных переходов для соединения $AgIn_{11}S_{17}$ при 300 К

Структура	$\hbar\omega_{ m max},$ эВ	δ , эВ	$S, \Im B^{-1}$	$S_u^{\max}, \mathbf{B}/\mathbf{B}_{\mathrm{T}}$	$E_g^{\rm in},$ $\Im { m B}$	$E_g^{\rm dir},$ эВ
H ₂ O/AgIn ₁₁ S ₁₇	3-3.4	~ 1.2	12	1900	1.83	2.48

Проведенные исследования показали, что энергетическое положение коротковолнового спада η в структурах In/AgIn₁₁S₁₇ практически не зависит от геометрии освещения. Это обстоятельство позволяет считать, что созданные барьеры не обеспечивают подавления влияния поверхностной рекомбинации фотогенерированных пар, которая, по-видимому, и ответственна за коротковолновой спад η при $\hbar \omega > \hbar \omega_{max}$.

В табл. 1 приведены значения полной ширины спектров $\eta(\hbar\omega)$ на их полувысоте (δ). Видно, что для структур на основе тройного соединения AgIn₁₁S₁₇ спектр фоточувствительности, нормированный на число падающих фотонов, имеет широкополосный характер.

Наряду с твердотельными поверхностно-барьерными структурами на кристаллах AgIn₁₁S₁₇ была изучена также возможность создания фотоэлектрохимических ячеек (ФЭХЯ) [12,13]. В качестве электролита использовалась дистиллированная вода с добавлением NaCl, которая приводилась в прямой контакт со сколотой поверхностью кристаллов, снабженных омическим контактом. Для изоляции электролита от омического контакта последний покрывался диэлектрическим лаком. В качестве контрэлектрода в ФЭХЯ использовался заостренный платиновый проводник. Измерения фоточувствительности ФЭХЯ H₂O/AgIn₁₁S₁₇ проводились на модулированном ($f \approx 20 \, \Gamma$ ц) освещении со стороны контрэлектрода неполяризованным излучением [13]. Все созданнные ФЭХЯ обнаружили более высокие, чем твердотельные структуры, выпрямление электрического тока ($K \approx 20$ при $U \approx 10 \,\mathrm{B}$) и фотовольтаический эффект. Как видно из данных табл. 2, максимальная вольтовая фоточувствительность ФЭХЯ на несколько порядков выше, чем для поверхностно-барьерной структуры In/AgIn₁₁S₁₇. Следует также отметить отсутствие какой-либо деградации фотоэлектрических параметров изготовленных ФЭХЯ.

Типичные для созданных ФЭХЯ спектры $\eta(\hbar\omega)$ при освещении их неполяризованным излучением со стороны электролита представлены на рис. 3. Видно, что приведенный спектр существенно отличается от аналогичного спектра для поверхностно-барьерной структуры, созданной на этих же кристаллах (рис. 1). Действительно, в области $\hbar\omega < 2$ эВ для ФЭХЯ H₂O/AgIn₁₁S₁₇ возникает практически экспоненциальное возрастание зависимости $\eta = f(\hbar\omega)$. Этому возрастанию можно сопоставить крутизну *S*, определяемую из соотношения

$$S = \Delta(\ln \eta) / \Delta(\hbar \omega). \tag{2}$$

Рис. 3. Спектральная зависимость относительной квантовой эффективности фотопреобразования ячеек $H_2O/AgIn_{11}S_{17}$ при 300 К. Освещение структуры производилось со стороны электролита.

Основным отличием спектров фоточувствительности Φ ЭХЯ, полученных на кристаллах AgIn₁₁S₁₇ по отношению к рассмотренным для поверхностно-барьерных твердотельных структур, следует считать отсутствие выраженного коротковолнового спада η . Последнее дает основание считать, что эффективность разделения и собирания фотогенерированных пар в барьерах полупроводник/электролит оказывается намного выше, чем для твердотельных структур In/AgIn₁₁S₁₇. В табл. 2 указан спектральный диапазон максимальной фоточувствительности $\hbar\omega_{\text{max}} \Phi$ ЭХЯ. Величина δ наряду с высокими значениями S_u^{max} для таких ячеек, определенная из спектров $\eta(\hbar\omega)$, оказалась значительно выше, чем для поверхностно-барьерных структур (табл. 1).

На рис. 4 представлены спектральные зависимости $\eta(\hbar\omega)$ для ФЭХЯ, построенные в координатах $(\eta\hbar\omega)^{1/2} = f(\hbar\omega)$ и $(\eta\hbar\omega)^2 = f(\hbar\omega)$. Предполагая, что эти зависимости в основном определяются процессами межзонного поглощения, на основании существующей теории [14] можно оценить характер межзонных переходов и ширину запрещенной зоны тройного соединения AgIn₁₁S₁₇. Видно, что в более длинноволновой области спектра рост фоточувствительности ФЭХЯ спрямляется в координатах $(\eta\hbar\omega)^{1/2} = f(\hbar\omega)$. Это позволяет пред-

Рис. 4. Зависимости: $1 - (\eta \hbar \omega)^{1/2} = f(\hbar \omega)$ и $2 - (\eta \hbar \omega)^2 = f(\hbar \omega)$ для ячеек H₂O/AgIn₁₁S₁₇ при 300 K.

положить, что длинноволновый край $\eta(\hbar\omega)$ определяется непрямыми межзонными переходами в тройном соединении AgIn₁₁S₁₇, а из экстраполяции $(\eta\hbar\omega)^{1/2} \rightarrow 0$ определить ширину запрещенной зоны E_g^{in} для таких переходов. Значения E_g^{in} приведены в табл. 2. Из рис. 4 также видно, что более коротковолновая часть спектра фоточувствительности ФЭХЯ уже подчиняется квадратичной зависимости $(\eta\hbar\omega)^2 = f(\hbar\omega)$. Поэтому есть основания связывать эту особенность с наступлением прямых межзонных переходов, а из экстраполяции зависимости $(\eta\hbar\omega)^2 \rightarrow 0$ оценить энергию прямых межзонных переходов (E_g^{dir}) для указанного соединения. Результаты этой оценки даны в табл. 2.

4. Заключение

Таким образом, на кристаллах тройного соединения $AgIn_{11}S_{17}$ впервые созданы фоточувствительные барьеры Шоттки $In/AgIn_{11}S_{17}$ и фотоэлектрохимические ячейки $H_2O/AgIn_{11}S_{17}$ и исследованы их фотоэлектрические свойства. Сделан вывод о характере межзонных переходов в указанном соединении и оценена ширина запрещенной зоны. Показано, что созданные структуры могут использоваться в качестве селективных и широкополосных фотодетекторов естественного излучения.

Физика и техника полупроводников, 2004, том 38, вып. 2

Работа выполнена при поддержке ОФН РАН "Новые принципы преобразования энергии в полупроводниковых структурах" и INTAS 01-283.

Список литературы

- И.В. Боднарь, Т.Л. Кушнер, В.Ю. Рудь, Ю.В. Рудь, М.В. Якушев. ЖПС, 69, 519 (2002).
- [2] C. Rincon, S.M. Wasim, G. Marin, R. Marques. Book of Abstracts of 13 ICTMC (Paris, 2002) p. 83.
- [3] S.M. Wasim, G. Marin, C. Rincon, R. Marques, C. Torres, A. Rincon. *Book of Abstracts of 13 ICTMC* (Paris, 2002) p. 205.
- [4] N.M. Gasanly, A. Serpengurel, A. Audinly, O. Gurli, I. Vilmax. J. Appl. Phys., 85, 3198 (1999).
- [5] S.B. Tsang, S.H. Wei, A. Zunger, H. Katayama-Yochida. Phys. Rev. B, 57, 9642 (1998).
- [6] J.L. Shay, J.H. Wernick. Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties and Applications (N.Y., Pergamon Press, 1975).
- [7] Copper Indium Diselenide for Photovoltaic Applications, ed. by T.J. Coutts, L.L. Kazmerskii, S. Wagner (Amsterdam, Elsevier, 1986).
- [8] Н.Н. Ищенко, Л.Г. Старобинец, Л.И. Ганаго. Изв. АН БССР. Сер. хим. наук, № 5, 132 (1977).
- [9] Л.Г. Старобинец, Н.Н. Ищенко, Л.И. Ганаго. Изв. АН БССР. Сер. хим. наук, № 1, 111 (1988).
- [10] П.П. Киш, С.Т. Орловский. ЖАХ, 17, 1057 (1962).
- [11] Т. Мосс, Г. Баррел, Б. Эллис. Полупроводниковая оптоэлектроника (М., Мир, 1963).
- [12] Ю.Я. Гуревич, Ю.В. Плесков. Фотоэлектрохимия полупроводников (М., Наука, 1976).
- [13] Ю.В. Рудь, М. Таиров. ФТП, 21, 615 (1987).
- [14] Ж. Панков. Оптические процессы в полупроводниках (М., Мир, 1973).

Редактор Т.А. Полянская

Photosensitive structures based on $AgIn_{11}S_{17}$ compounds

I.V. Bodnar, G.A. Ilchuk⁺, V.Yu. Rud^{**}, Yu.V. Rud⁺⁺

Belorussian State University of Informatics and Radioelectronics, 220013 Minsk, Belarus * St. Petersburg State Polytechnical University, 195251 St. Petersburg, Russia + Ioffe Physicotechnical Institute,

Russian Academy of Sciences,

194021 St. Petersburg, Russia