Исследование границы раздела ZnS-CdHgTe

© В.П. Бирюлин[¶], С.А. Дудко, С.А. Коновалов, Ю.А. Пелевин, В.И. Туринов

Научно-производственное предприятие "Исток",

141120 Фрязино, Россия

(Получена 28 февраля 2003 г. Принята к печати 18 марта 2003 г.)

При исследовании границы раздела ZnS-Cd_xHg_{1-x}Te с помощью C-V-характеристик МДП структур на спутниковых образцах в процессе изготовления n^+-p -переходов на p-Cd_xHg_{1-x}Te была получена плотность состояний в пределах $N_{ss} = (1-6) \cdot 10^{11}$ см⁻² эB⁻¹ при T = 78 K. Эксперименты показали, что технологические режимы, применяемые при изготовлении n^+-p -переходов, слабо изменяют состояние границы раздела ZnS-CdHgTe. Причем отрицательные значения напряжения плоских зон V_{FB} указывают (даже если первоначально после нанесения пленки ZnS было $V_{FB} > 0$) на обогащение приповерхностного слоя ZnS-p-CdHgTe основными носителями, дырками, что приводило к уменьшению тока утечки по поверхности. Получено было также, что при длительном сроке хранения (до ~ 15 лет) на воздухе при комнатной температуре у таких n^+-p -переходов с защитной пленкой ZnS не деградировали дифференциальное сопротивление R_d , токовая чувствительность S_i и обнаружительная способность D^* .

К пассивирующему покрытию фотодиодных структур на узкозонном Cd_xHg_{1-x} Te с x = 0.2 на спектральный диапазон 8–14 мам предъявляются высокие требования. Помимо обычных требований к полупроводниковым приборам, таким как стабильность границы раздела, хорошая адгезия и высокая диэлектрическая прочность, требуется также, чтобы покрытие выдерживало термоциклы от 78 до 300 K без изменения электрических свойств. И пожалуй, основное требование, чтобы температура нанесения диэлектрика не превышала 90–100°C из-за термической нестабильности самого материала Cd_xHg_{1-x} Te.

В структурах SiO₂-Hg_{1-x}Cd_xTe ($x \approx 0.2$) плотность поверхностных состояний N_{ss} получают как с низкой величиной $N_{ss} = (1-2) \cdot 10^{11} \,\mathrm{cm}^{-2} \mathrm{sB}^{-1}$, так и с высокой — $(8-9) \cdot 10^{11}$ см⁻² эВ⁻¹[1], а согласно работе [2] N_{ss} колеблется от $1.25 \cdot 10^9$ до $3 \cdot 10^{11}$ см⁻²эВ⁻¹. В структурах с собственными анодными пленками N_{ss} изменяется от $1 \cdot 10^9$ до $6 \cdot 10^{11}$ см⁻² эВ⁻¹ [3]. Для структур с анодным окислом, например из работы [4], на HgCdTe с параметрами x = 0.22, $p_0 = 1.6 \cdot 10^{16} \,\mathrm{cm}^{-3}$ и дополнительной пленкой ZnS толщиной $d_{ZnS} = 0.25$ мкм исследователями было получено значение $N_{ss} = 4 \cdot 10^{11} \text{ см}^{-2} \text{эB}^{-1}$. В работе [5] при пассивации пленкой SiN_x $n^+ - p$ -переходов на Hg_{1-x}Cd_xTe, c граничной длиной волны чувствительности $\lambda = 5.4$ мкм, для структур $SiN_x - Hg_{1-x}Cd_xTe$ (x = 0.3) была получена минимальная величина $N_{ss} = 1 \cdot 10^{11} \,\mathrm{cm}^{-2} \mathrm{g}\mathrm{B}^{-1}$, а для $ZnS-Hg_{1-x}Cd_xTe$ с тем же значением x $N_{ss} = 5 \cdot 10^{11} \,\mathrm{cm}^{-2}$ э B^{-1} . Авторы работы [6], проведя сравнительный анализ пассивирующих свойств различных диэлектрических пленок для этого материала, указывают, что пленка ZnS формирует качественную границу раздела на свежетравленном HgCdTe с низкой плотностью N_{ss} , но нестабильна при термоциклах от комнатной температуры до 80-90°С и имеет худшие изоляционные свойства по сравнению с SiO₂.

Измерения С-V-характеристик МДП структур проводились на установке, собранной на основе прибора Е7-12, при $T = 78 \,\mathrm{K}$ на структурах металл-ZnS-CdHgTe (металл=Al+In) на частоте f = 1 МГц с записью дисперсионной зависимости емкости в пределах напряжения смещения на металлическом электроде $V = \pm 20 \,\mathrm{B}$ с шагом 0.1 В. Площадь металлического контакта была $S = 0.5 \,\mathrm{mm^2}$, толщина ZnS составляла ~ 0.4-0.6 мкм, емкость диэлектрика $C_d = 50 - 100 \, \mathrm{n}\Phi$, дисперсию емкости можно видеть на рис. 1-4.

В процессе изготовления фотодиодов кристаллы CdHgTe с пассивирующей пленкой неоднократно подвергаются температурному воздействию при напылении индиевых контактов ($T \approx 80-100^{\circ}$ C, $\tau \approx 5$ мин) и при пайке на поликоровую подложку ($T \approx 115^{\circ}$ C, $\tau \approx 2$ мин). Но особенно длительно ($T \approx 90^{\circ}$ C, $\tau > 13$ ч) тогда, когда уже готовые фотодиодные структуры монтируются в криостаты и производится обезгаживание приборов на вакуумном посту, а затем (при $T \approx 60^{\circ}$ C, $\tau \ge 100$ ч) и на стенде в паре с электроразрядным насосом НЭМ-02. В этом случае может происходить изменение состояния границы раздела

Наша многолетняя практика, однако, показала, что пленку ZnS можно успешно применять не только в технологическом процессе изготовления (как маску при ионном легировании) n^+ -*p*-переходов на *p*-Hg_{1-x}Cd_xTe с $x \approx 0.2$, но и для окончательной пассивации фотодиодных структур. Для повышения электрической прочности пленка обычно наносилась испарением в 3-5 приемов, максимальная температура пластин, развивающаяся при напылении за счет разогрева излучением испарителя и выделения теплоты конценсации, составляла ~ 110°С. При этом в рамках разработки фотодиодов на Hg_{1-x}Cd_xTe нами были выполнены исследования N_{ss} границы раздела ZnS–CdHgTe и изменения N_{ss} в технологических процессах изготовления фотодиодов, а также при их длительном хранении, результаты которых приведены далее.

[¶] E-mail: birulin@sl.ru

Рис. 1. Влиние прогрева в вакууме ($T = 60^{\circ}$ С) на МДП характеристики структуры ZnS-CdHgTe. Образец 4, x = 0.219, $p = 1.18 \cdot 10^{16}$ см⁻³, $d_{ZnS} = 0.52$ мкм, контакт Al+In; τ , ч: I = 0, 2 = 110, 3 = 283 (таблица). Приведенный поверхностный потенциал при V = 0 $y = \varphi_s/k_0T$: +0.334 (кривая I), +1.26 (кривая 2) и +2.1 (кривая 3).

Рис. 2. Влиние прогрева в вакууме $(T = 60^{\circ} \text{C})$ на гитерезис ВФХ структуры ZnS-CdHgTe: образец 4 (кривые 1 и 2) соответствуют кривым 1 и 2 рис. 1.

ZnS-CdHgTe. Для проверки этого были выполнены измерения C-V-характеристик МДП структур до и после отжига при различных температурах в зависимости от времени, представленные на рис. 1-4 и в таблице, и они, как и ожидалось, имели низкочастотный вид, поскольку время жизни носителей тока в исследованных образцах было $\tau_n < 1/2\pi f$. Электрические и фотоэлектрические параметры и характеристики n^+-p -переходов определяются в основном слабо легированной *p*-областью,

Рис. 3. Влияние обработки поверхности *p*-CdHgTe и последующего прогрева структуры Me–ZnS–CdHgTe на ее C-V-характеристики: I — образец 5, 2 — образец 6, 3 — образец 7. Приведенный поверхностный потенциал при V = 0, $y = \varphi_s/k_0T$: -1.36 (кривая I), -1.15 (кривая 2) и +0.82 (кривая 3).

Рис. 4. Влияние обработки поверхности *p*-CdHgTe и последующего прогрева структуры Me–ZnS–CdHgTe на гистерезис ее ВФХ: кривые 1-3 соответствуют кривым 1-3 рис. 3.

Физика и техника полупроводников, 2003, том 37, вып. 12

Номер плас- тины и МДП структуры	Темпе- ратура отжига, °С	Время отжига, ч	V_{FB},V	$N_{ss.mid}$, 10^{11} см $^{-2}$ э B^{-1}
1	90	0	-0.553	5.40
		8	-0.719	5.47
		21	-0.849	4.40
		37	-0.839	5.23
2	90	0	-0.198	5.80
		21	-0.437	2.02
		37	-0.547	3.12
3	60	0	-0.049	2.13
		13	-0.12	2.10
		46	-0.566	3.16
		71	-0.254	2.09
		110	-0.304	2.16
		164	-0.376	2.21
		221	-0.365	1.85
		283	-0.411	2.02
		342	-0.494	2.10
4	60	0	+0.095	1.62
		46	-0.269	1.60
		71	-0.186	1.52
		110	-0.204	1.48
		164	-0.242	1.30
		283	-0.275	1.33

поэтому исследования проводились только на материале *p*-типа: и параметры границы раздела ZnS-CdHgTe, Q_{ss} и N_{ss} можно рассчитывать по формулам для параболической зоны [7]:

$$C = C_s C_d / (C_s + C_d); \quad C_d = \varepsilon_d \varepsilon_0 / d;$$

$$C_s = (q/k_0 T) (\partial Q_s / \partial T)$$

$$= (\varepsilon_s \varepsilon_0 / 2L_D) \Big| \{ \delta [1 - \exp(-y)] - \delta^{-1} [1 - \exp(y)] \} / \{ \delta [\exp(-y) + y - 1] + \delta^{-1} [\exp(y) - y - 1] \}^{1/2} \Big|, \qquad (1)$$

$$Q_s = (k_0 T / q) (\varepsilon_s \varepsilon_0 / L_D) \{ \delta [\exp(-y) + y - 1] + \delta^{-1} [\exp(y) - y - 1] \}^{1/2}, \qquad (2)$$

где C — измеряемая емкость, состоящая из последовательно включенной емкости поверхностного слоя пространственного заряда полупроводника C_s и емкости диэлектрика C_d (ZnS); Q_s — заряд поверхностного слоя полупроводника; $y = \varphi_s q/k_0T$ приведенный поверхностный потенциал, q — заряд электрона, k_0 — константа Больцмана, T — температура в K; $\delta = p_0/n_i$, p_0 и n_i — концентрация основных носителей и собственная концентрация в объме *p*-CdHgTe; $L_D = (\varepsilon_s \varepsilon_0 k_0 T/2n_i q^2)$ — длина экранирования Дебая; ε_s , ε_d , ε_0 — относительные

диэлектрические проницаемости CdHgTe, ZnS и вакуума соответственно. Для расчетов принято $\varepsilon_s = 19.5$ для составов $x \approx 0.2$ [8], для ZnS $\varepsilon_d = 7.45$ [6] и $\tilde{n} = 2.19$ на длине волны $\lambda = 10.6$ мкм [9]. Из экспериментальной *С*-*V*-характеристики (рис. 1) находим минимальное значение емкости поверхностного слоя полупроводника $C_{s.\min} = C_d C_{\min} / (C_d - C_{\min}),$ соответствующее условию сильной инверсии пространственного заряда этого слоя, выражение (1), при условии $y \ge 2 \ln \delta$, и по $C_{s,\min}$ определяем δ . Например, для образца 4 (кривая *I*, рис. 1): $y = 16, \delta = 2540$ при x = 0.219 и $E_g = 0.129$ эВ, а $n_i = 4.65 \cdot 10^{12}$ см⁻³, т.е. $p_0 = 1.18 \cdot 10^{16} \text{ cm}^{-3}, \quad E_c - E_i = 0.044 \text{ } \text{3B}, \quad F - E_v = 0.032 \text{ } \text{3B}, \quad L_D = 8.82 \cdot 10^{-5} \text{ } \text{cm}, \quad d_{\text{ZnS}} = 0.52 \text{ } \text{mkm},$ $C_{\min} = 1.17 \cdot 10^{-8} \, \Phi/\text{cm}^2, \quad C_{s.\min} = 1.52 \cdot 10^{-7} \, \Phi/\text{cm}^2, \quad \text{a}$ емкость плоских зон $C_{FB} = 61.22 \,\mathrm{n}\Phi$ при площади верхнего металлического контакта $A = 5 \cdot 10^{-3}$ см². Подставляя δ и у в (2), находим $Q_s(y)$ и плотность поверхностного заряда $Q_{ss}(y)$ из уравнения баланса напряжения на МДП структуре: $Q_{ss}(y) = -[C_d V + Q_s(y)]$. Плотность поверхностных состояний находим дифференцированием зависимостей $Q_{ss}(y)$, т.е. $N_{ss} = (1/q) (dQ_{ss}(y)/dy))$ (рис. 5, 6). В таблице представлены значения $N_{ss,mid}$, т.е. усредненные по Eg плотности поверхностных состояний $N_{ss,mid} = N_{ss}(V_{FB})/E_g$, где $N_{ss}(V_{FB})$ в данном случае находится по соотношению $N_{ss}(V_{FB}) = C_d V_{FB}/q$, V_{FB} напряжение плоских зон (таблица), которое можно определить, в частности, по соотношению (1), положив в нем y = 0, тогда $C_{s0}(y = 0) = q(\varepsilon_s \varepsilon_0 p_0/k_0 T)^{1/2}$ и $C_{FB} = C_{s0}C_d / (C_{s0} + C_d)$, по которому и находим V_{FB} .

Эксперименты показали (см. таблицу, рис. 1, 2), что эти технологические режимы изменяют слабо состояние границы раздела ZnS–CdHgTe. Причем отрицательные значения напряжения плоских зон V_{FB} указывают (даже

Рис. 5. Влиние прогрева в вакууме $(T = 60^{\circ}\text{C})$ на N_{ss} структуры ZnS-CdHgTe: образец 4, x = 0.215-0.223, $p = 8.7 \cdot 10^{15} \text{ см}^{-3}$, $d_{ax} = 0.52 \text{ мкм}$, контакт Al+In; τ , ч: l = 0, 2 = 110, 3 = 283. Кривые l-3 соответствуют кривым l-3 рис. 1.

Рис. 6. Влияние обработки поверхности *p*-CdHgTe и последующего прогрева структуры Me-ZnS-CdHgTe на N_{ss} кривые 1-3 соответствуют кривым 1-3 рис. 3.

если первоначально после нанесения пленки ZnS было $V_{FB} > 0, -$ см. таблицу, рис. 1, образец 2) на обогащение приповерхностного слоя ZnS-*p*-CdHsTe основными носителями, дырками, что должно приводить к уменьшению тока утечки у $n^+ - p$ -переходов по поверхности. На С-V-характеристиках обычно имелись неширокие гистерезисные петли при проходе в прямом и обратном направлениях по напряжению, прикладываемому к верхнему электроду (рис. 3, 4), т.е. заряд подвижных ионов в пленке назначительный. Более существенное влияние на свойства границы оказывают обработка поверхности пластин перед нанесением пленки ZnS и режим ее нанесения (рис. 3, 4): кривая 1 — кипячение пластины p-CdHgTe в метаноле и затем вакуумное напыление пленки ZnS на пластину, температура которой была $T = 90^{\circ}$ С; кривая 2 — кипячение пластины в ацетоне и нанесение ZnS при $T = 90^{\circ}$ C; кривая 3 — кипячение пластины в ацетоне и нанесение ZnS при $T = 60^{\circ}$ C. Хотя и в этом случае плотность поверхностных состояний N_{ss} получается не выше, чем на качественных структурах из работ [1-5].

Из представленного здесь можно сделать заключение, что низкая N_{ss} (рис. 5, 6) в наших структурах, отрицательные значения V_{FB} (см. таблицу), а также относительно высокие пробивные напряжения $V \approx 10-15$ В пленки ZnS свидетельствуют, что пленка ZnS, технологические режимы ее нанесения и режимы обезгаживания криостатов можно считать удовлетворительными для пассивации покрытием n^+-p -переходов на p-CdHgTe с $x \approx 0.2$. К этому следует добавить также, что длительное хранение кристаллов с n^+-p -переходами в обычных комнатных условиях (температура $20-25^{\circ}$ С, в атмосфере воздуха) в течение ≈ 15 лет не привело к деградации у них таких эксплуатационных параметров, как дифференциальное сопротивление при нулевом смещении R_0 , вольтовая чувствительность S_v и обнаружительная способность D^* . И такие $n^+ - p$ -переходы после хранения монтировались в криостаты, проводился стандартный цикл обезгаживания, фотодиоды поставлялись заказчикам, и в дальнейшем не было отказа их по фотоэлектрическим параметрам.

Итак, при исследовании границы раздела *C*-*V*-характеристик $ZnS-Cd_xHg_{1-x}Te$ c помощью МДП структур было получено, что плотность состояний N_{ss} на такой границе раздела не выше, чем на границе раздела SiO₂-Cd_xHg_{1-x}Te или на границе с собственным анодным окислом, и находится в пределах $N_{ss} = (1-6) \cdot 10^{11} \,\mathrm{сm}^{-2} \mathrm{эB}^{-1}$. Пленка ZnS удовлетворительно выполняла функцию пассивации поверхности n^+ -*p*-переходов на *p*-Cd_xHg_{1-x}Te. Получено было также, что при длительном сроке хранения $(до ~ 15 \, \text{лет})$ на воздухе при комнатной температуре у таких $n^+ - p$ -переходов с защитной пленкой ZnS не деградировали дифференциальное сопротивление R_d, токовая чувствительность S_i и обнаружительная способность D*, и они успешно использовались в дальнейшем в качестве чувствительных элементов.

Список литературы

- B.K. Janousek, R.C. Carscallen, P.A. Bertran. J. Vac. Sci. Technol. A, 1, 1723 (1983).
- [2] J.A. Wilson, V.A. Cotton. J. Vac. Sci. Technol. A, 3, 199 (1985).
- [3] Y. Nemirovsky, L. Burstein, I. Kidron. J. Appl. Phys., 58, 366 (1985).
- [4] Y. Nemirovsky, R. Adar, A. Kornfeld, I. Kidron. J. Vac. Sci. Technol. A, 4, 1986 (1986).
- [5] N. Kajihara, G. Sudo, Y. Miyamoto, K. Tanikawa. J. Electrochem. Soc., 135, 1252 (1988).
- [6] Y. Nemirovsky, G. Bahir. J. Vac. Sci. Technol. A, 7, 450 (1989).
- [7] M.V. Whelan. Phil. Res. Rep., 20, 620 (1965).
- [8] D.L. Carter, M.A. Kinch, D.D. Buss. J. Phys. Chem. Sol., Suppl 1, 32, 273 (1971).
- [9] A. Campbell, C. Hayman. Proc. SPIE, 915, 79 (1988).

Редактор Л.В. Беляков

Investigation of the interface between ZnS–CdHgTe

P.V. Birulin, C.A. Dudko, C.A. Konovalov, J.A. Pelevin, V.I. Turinov

Istok Scientific–Industrial Society, 141120 Fryazino, Russia