Отрицательная люминесценция на длине волны 3.9 мкм в диодах на основе InGaAsSb

© М. Айдаралиев, Н.В. Зотова, С.А. Карандашев, Б.А. Матвеев, М.А. Ременный, Н.М. Стусь, Г.Н. Талалакин

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 10 февраля 2003 г. Принята к печати 17 февраля 2003 г.)

Приведены вольт-амперные характеристики, а также спектральные и ватт-амперные характеристики излучения диодов, изготовленных из двойных гетероструктур InAsSbP/InGaAsSb на подложке InAs, при прямом и обратном смещении в диапазоне температур 25–90°С. Показано, что отрицательная люминесценция, возникающая вследствие экстракции носителей из областей вблизи от p-n-перехода при температурах $\sim 90^{\circ}$ С, имеет больший коэффициент преобразования, чем электролюминесценция. Показано сужение спектров отрицательной люминесценции в диодах со встроенными резонаторами.

1. Введение

Эффект отрицательной люминесценции (ОЛ) в полупроводниках известен с 1965 г., когда В.И. Иванов-Омский с коллегами из Физико-технического института им. А.Ф. Иоффе обнаружили уменьшение излучательной способности ниже ее равновесного значения вблизи одной из поверхностей антимонида индия, помещенного во взаимно перпендикулярные электрическое и магнитное поля [1]. Аналогичный эффект имеет место и в p-n-переходе, если к нему приложено обратное смещение. При этом экстракция носителей из примыкающих к *p*-*n*-переходу областей приводит к уменьшению их концентрации ниже равновесной величины так, что $(np) < (n_0p_0) = n_i^2$, где n_0, p_0, n, p — равновесные и неравновесные концентрации электронов и дырок соответственно, а *n_i* — собственная концентрация. Следствием экстракции носителей является уменьшение интенсивности излучательной рекомбинации Р, которая становится ниже теплового фона P₀, и преобладание поглощения над излучением, т.е. люминесценция становится "отрицательной":

$$\Delta P = P - P_0 = P_0 \left(\frac{np}{n_i^2} - 1\right) \le 0.$$

Отрицательная люминесценция исследовалась в объемных кристаллах InAs [2], диодах на основе InSb и CdHgTe [3,4] и, совсем недавно, в структурах на основе сверхрешеток [5,6]. Приборы ОЛ применяют для экранирования фотоприемников от теплового фона и для тестирования фотоприемных систем [7]. В последнем случае важна неизменность потока излучения, поэтому равномерное распределение интенсивности ОЛ и слабая зависимость мощности ОЛ от тока вблизи насыщения создают преимущества источников ОЛ по сравнению с электролюминесцентными (т.е. прямо смещенными) источниками. Равномерность распределения излучения является следствием увеличения сопротивления *p*-*n*-перехода при обратном смещении и соответствующего этому перераспределения линий тока. В прямом же направлении перераспределение линий тока сопровождается, как правило, сужением области излучения при увеличении тока [8].

Мощность ОЛ, или "тепловой контраст", ограничивается мощностью излучения абсолютно черного тела при данной температуре. С увеличением температуры и длины волны (λ) мощность ОЛ возрастает в противоположность мощности электролюминесценции (ЭЛ), которая из-за оже-рекомбинации уменьшается. Было показано, что в гомопереходе p-InAsSb_{0.2}/n-InAsSb_{0.2} $(\lambda = 5.5 \,\text{мкм})$ режим ОЛ становится более эффективным начиная с температур вблизи 80°С [9], а для сверхрешеток InAs/InAsSb ($\lambda = 4.3$ мкм) такая температурная граница была определена как 310 К [10]. Однако с изменением температуры изменяется и длина волны, что является нежелательным для калибровочных (тестовых) источников. Длина волны может быть стабилизирована с помощью встроенных резонаторов, как это сделано, например, в [11] (resonant cavity LEDs). Насколько нам известно, подобных экспериментов для источников ОЛ не проводилось.

В данной работе мы исследуем ОЛ в двойных гетероструктурах с активной областью из *n*-InGaAsSb ($\lambda = 3.8$ мкм при 20°С), в том числе в диодах, состыкованных с резонатором, в интервале температур 20–90°С.

2. Изучаемые объекты и методики исследования

Согласованные по параметру решетки диодные гетероструктуры *p*-InAsSb_{0.09}P_{0.18}/*n*-InGa_{0.07}AsSb_{0.07} выращивались методом жидкофазной эпитаксии на подложке *n*-InAs (111) при 630–680°С. Толщина подложки составляла 350 мкм, концентрация электронов $2 \cdot 10^{16}$ см⁻³; широкозонный слой *p*-InAsSbP (ширина запрещенной зоны $E_g = 390$ мэВ при 300 K) толщиной 2–4 мкм легировался Zn до концентрации дырок (5–7) $\cdot 10^{17}$ см⁻³ и выращивался вслед за активной областью из InGa_{0.07}AsSb_{0.07} толщиной 2–3 мкм. Между подложкой и InGaAsSb был расположен слой *n*-InAsSbP

Рис. 1. Вольт-амперная характеристика (прямая и обратная ветви) диода (3.8 мкм при 20°С) с активной областью из InGaAsSb диаметром 300 мкм при комнатной температуре.

толщиной 2–3 мкм. Аналогичные структуры были использованы нами для создания мощных лазеров на длину волны 3.3 мкм, описанных в [12].

Круглые меза-структуры диаметром 300 мкм и верхний контакт к *p*-области (Au:Zn) диаметром 240 мкм создавались методом фотолитографии. Измерения проводились на чипах размерами 1 × 0.9 мм², смонтированных на кремниевый носитель размерами $1.1 \times 1.6 \times 0.4$ мм³ с подковообразной (в виде буквы U) контактной областью для катода и круглым контактом для анода, расположенными в одной плоскости (обычно обозначают flip chip bonding или episide-bonded structures) (см. также рис. 1 в [13]). Излучение выводилось через широкозонный слой *n*-InAsSbP и утоньшенную до толщины 80-120 мкм подложку. В ряде экспериментов на поверхности подложки устанавливался интерференционный фильтр с полосой пропускания при 3.9 мкм, при этом поверхность фильтра была оптически состыкована с гетероструктурой посредством халькогенидного стекла с показателем преломления 2.6.

Измерения ЭЛ проводились в импульсном режиме. Измерения спектров и абсолютной мощности излучения были выполнены с помощью охлаждаемого фотодиода на основе HgCdTe (77 K) с учетом диаграммы направленности светодиода и спектральной чувствительности фотоприемника.

3. Экспериментальные результаты и их обсуждение

На рис. 1 показана вольт-амперная характеристика диода с активной областью InGaAsSb при комнатной температуре; обратный ток насыщения составлял 50 мкА, а фактор идеальности прямой ветви $\alpha = 1.08$. Близость α к единице указывает на высокое качество p-n-перехода и выгодно отличает наши диоды от аналогов, полученных в работе [14] и имеющих $\alpha = 1.3$. При напряжении $\gtrsim 0.35$ В барьер на *p*-*n*-переходе спрямляется, и зависимость тока от напряжения становится линейной. Вблизи нуля смещения сопротивление составляло $R_0 = 560$ Ом ($R_0A = 0.4$ Ом · см² при площади диода $A = 0.7 \cdot 10^{-3}$ см²).

Необходимым условием наблюдения ОЛ является насыщение обратного тока и отсутствие утечек, которые могут разогреть структуру и уменьшить отрицательный радиационный контраст. Отсутствие утечек создает возможность использования диода в качестве фотоприемника. Так, например, большинство работ по ОЛ за последние 5 лет были выполнены на фотодиодах. Обнаружительная способность нашего диода при комнатной температуре $(D^*_{\lambda \max} = 1 \cdot 10^{10} \text{ см} \cdot \Gamma \mathfrak{u}^{1/2} \cdot \text{Br}^{-1})$ оказалась на уровне характеристик лучших фотодиодов данного спектрального диапазона, и нам удалось зарегистрировать отрицательный радиационный контраст при обратном смещении. На рис. 2 приведены ток насыщения I_{sat} и мощность излучения, полученная при питании диода током, по абсолютной величине равным току насыщения, $I = |I_{sat}|$, а также коэффициент преобразования для положительной и отрицательной люминесценции (мВт/А). При температуре 25°С мощность (0.05 мкВт) и коэффициент преобразования (0.74 мВт/А) для режима ОЛ и ЭЛ совпадают, что отражает линейность ваттамперной характеристики при малых тока. Коэффициент преобразования оказался более чем в 2 раза меньше, чем для излучения диодов из арсенида индия с длиной волны 3.4 мкм, что отражает общую тенденцию уменьшения эффективности преобразования с уменьшением энергетического зазора [15].

В [16,17] было показано, что при температурах выше 200 К в *p*-*n*-переходах в InAs и близких к нему по составу твердых растворах преобладает диффузионный механизм тока, т.е. в соответствии с теорией Шокли рекомбинация в *n*- и *p*-областях *p*-*n*-перехода определяет вольт-амперные характеристики. Этот вывод подтверждается и нашими измерениями, которые показывают насыщение обратного тока даже при повышенных

Рис. 2. Температурная зависимость мощности излучения при $I = |I_{sat}|$, тока насыщения и коэффициента преобразования излучения в режиме ОЛ (1) и ЭЛ (2) в диоде с активной областью из InGaAsSb диаметром 300 мкм.

Физика и техника полупроводников, 2003, том 37, вып. 8

Рис. 3. Спектральные зависимости положительной (a) и отрицательной (b) люминесценции диодов с активной областью из InGaAsSb с открытой поверхностью (сплошные линии) и сопряженных с фильтром (пунктирные линии) при 20 и 50°C. Режимы измерения: a - 10 мкс, $2 \kappa \Gamma$ ц, I = 150 мА; b - 200 мкс, $2 \kappa \Gamma$ ц, $I = I_{sat}$.

температурах вплоть до 200°С [15]. По-видимому, обработка поверхности в узкозонных диодах не является решающим фактором для наблюдения насыщения, поскольку при повышенных температурах значения токов насыщения значительно превышают токи утечек по поверхности. Ток насыщения при 90°С превышал ожидаемые токи утечек и составлял ~ 1 мА. В соответствии с ростом тока насыщения при повышении температуры возрастала и мощность ОЛ, однако коэффициент преобразования изменялся мало. Наши результаты, таким образом, не показали существенного влияния температуры на увеличение вероятности безызлучательных процессов (оже-рекомбинации) в исследуемом температурном диапазоне. Вместе с тем обращает на себя внимание тенденция к насыщению положительной мощности, проявляющаяся в относительном снижении коэффициента преобразования до 0.53 мВт/А при больших токах. Ранее нами был определен "нетепловой" характер такого изменения на аналогичных структурах [18] и в диодах *p*-InAsSb_{0.2}/*n*-InAsSb_{0.2} ($\lambda = 5.5$ мкм) [9]. Повидимому, можно считать, что преобладание коэффи-

Физика и техника полупроводников, 2003, том 37, вып. 8

циента преобразования ОЛ над коэффициентом преобразования ЭЛ является общим свойством узкозонных структур $A^{III}B^V$, отражающим влияние оже-процессов при больших токах.

На рис. 3 показаны спектры ЭЛ и ОЛ, измеренные при температурах 20 и 50°С, смещающиеся в длинноволновую область по мере увеличения температуры. С учетом спектров, приведенных на рис. 3, эффективность режима ОЛ составила $\eta_{\rm NL} = 0.8 - 0.9$, что близко к лучшим значениям, приведенным в литературе [19].

Спектр диода с фильтром практически не смещается при изменении температуры, поскольку изменение пропускания фильтра, связанное с изменением коэффициента преломления его слоев, мало. В максимуме пропускания фильтра мощность излучения оказалась выше, чем в исходном диоде, что связано с просветлением, вызванным присутствием встроенного резонатора (фильтра). В идеальном случае описанная выше конструкция диода позволит увеличить выход излучения в 1.4 раза.

Как видно из рис. 3, смещение максимума кривой излучения в длинноволновую область при увеличении температуры для диодов со свободной поверхностью и с фильтром одинаково как для ЭЛ, так и для ОЛ, что отражает симметрию (взаимосвязь) процессов излучения и поглощения. Одинаковое воздействие на форму спектров оказывает и присутствие в нашей оптической установке атмосферного углекислого газа: "горячая" люминесценция (ЭЛ) гасится поглощением в оптическом тракте "холодным" газом в области 4.3 мкм, в то время как "холодная" люминесценция (ОЛ) экранируется "горячим" по отношению к ней газом.

4. Заключение

Таким образом, В диодных гетероструктурах p-InAsSbP/n-InGa0.07AsSb0.07 при приложении обратного смещения наблюдалась интенсивная отрицательная люминесценция в области $\lambda = 3.9 - 4.1$ мкм, мощность которой возрастала с ростом тока и температуры в диапазоне 25-90°С. Эффективность отрицательной люминесценции составляла 0.8-0.9, а коэффициент преобразования 0.74-0.66 мВт/А, что несколько выше, чем для положительной люминесценции. Спектры ОЛ повторяли все особенности положительной люминесценции: слабую температурную зависимость энергетического положения пика излучения в диодах со встроенными резонаторами и ослабление излучения атмосферным углекислым газом.

Авторы считают приятным долгом поблагодарить Н.Д. Ильинскую за помощь при проведении работы.

Работа поддержана Министерством науки и технологий РФ в рамках программы "Разработка фундаментальных и технологических основ создания новых наноструктур для электроники и оптоэлектроники" и корпорацией Schlumberger Oilfield Services при административной поддержке со стороны Фонда гражданских исследований США для стран СНГ (CRDF).

Список литературы

- В.И. Иванов-Омский, Б.Т. Коломиец, В.А. Смирнов. Докл. АН СССР, 161 (6), 1308 (1965).
- [2] С.С. Болгов, В.К. Малютенко, А.П. Савченко. ФТП, 31 (5), 526 (1997).
- [3] T. Ashley, C.T. Elliot, N.T. Gordon, S.H. Hall, A.D. Johnson, G.R. Price. J. Cryst. Growth, 159, 1100 (1996).
- [4] T. Ashley, C.T. Elliot, N.T. Gordon, S.H. Hall, A.D. Johnson, G.R. Price. Infr. Phys. & Technology, 36, 1037 (1995).
- [5] M.J.P. Pullin, X. Li, J.D. Heber, D. Gevaux, C.C. Phillips. SPIE Proc., 3938-22, 144 (2000).
- [6] L.J. Olafsen, I. Vurgaftman, W.W. Bewley, C.L. Felix, E.H. Aifer, J.R. Meyer, J.R. Waterman, W. Mason. Appl. Phys. Lett., 74 (18), 2681 (1999).
- [7] G.R. Nash, N.T. Gordon, T. Ashley, M.T. Emeny, T.M. Burke. IEE Proc. Optoelectron. (2003) in print.
- [8] V.K. Malyutenko, O.Yu. Malyutenko, A.D. Podoltsev, I.N. Kucheryavaya, B.A. Matveev, M.A. Remennyi, N.M. Stus'. Appl. Phys. Lett., **79** (25), 4228 (2001).
- [9] B.A. Matveev, N.V. Zotova, S.A. Karandashev, M.A. Remennyi, N.M. Stus', G.N. Talalakin. IEE Proc. Optoelectron., 149 (1), 33 (2002).
- [10] M.J. Pullin, H.R. Hardaway, J.D. Heber, C.C. Phillips. Appl. Phys. Lett., 75 (22), 3427 (1999).
- [11] E. Hadji, J. Bleuse, N. Magnea, J.L. Pautrat. Appl. Phys. Lett., 67, 2591 (1995).
- [12] M. Aydaraliev, N.V. Zotova, S.A. Karandashov, B.A. Matveev, M.A. Remennyi, N.M. Stus', G.N. Talalakin, W.W. Bewley, J.R. Lindle, J.R. Meyer. Appl. Phys. Lett., 81 (7), 1166 (2002).
- [13] М. Айдаралиев, Н.В. Зотова, С.А. Карандашев, Б.А. Матвеев, М.А. Ременный, Н.М. Стусь, Г.Н. Талалакин. ФТП, 34 (1), 99 (2000).
- [14] A. Krier, V.V. Sherstnev, H.H. Gao, J. Phys. D: Appl. Phys., 33, 1656 (2000).
- [15] B.A. Matveev, N.V. Zotova, N.D. Il'inskaya, S.A. Karandashev, M.A. Remennyi, N.M. Stus', G.N. Talalakin. J. Mod. Optics, 49 (5/6), 743 (2002).
- [16] Н.П. Есина, Н.В. Зотова, Д.Н. Наследов. ФТП, **3**(5), 1370 (1969).
- [17] A. Krier, Y. Mao. Infr. Phys. & Technology, 38, 397 (1997).
- [18] М. Айдаралиев, Н.В. Зотова, С.А. Карандашев, Б.А. Матвеев, М.А. Ременный, Н.М. Стусь, Г.Н. Талалакин. ФТП, 35 (5), 619 (2001).
- [19] W.W. Bewley, M.J. Jurkovic, C.L. Felix, J.R. Lindle, I. Vurgaftman, J.R. Meyer, E.H. Aifer, J.E. Butler, S.P. Tobin, P.W. Norton, M.A. Hutchins. Appl. Phys. Lett., 78(20), 3082 (2001).

Редактор Л.В. Шаронова

A negative $3.9\,\mu$ m luminescence in InGaAsSb-based diodes

M. Aidaraliev, N.V. Zotova, S.A. Karandashev, B.A. Matveev, M.A. Remennyi, N.M. Stus', G.N. Talalakin

loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

954