Мессбауэровское исследование примесных атомов железа в арсениде галлия

© П.П. Серегин, Т.Р. Степанова, Ю.В. Кожанова, В.П. Волков

Санкт-Петербургский государственный политехнический университет, 195251 Санкт-Петербург, Россия

(Получена 3 февраля 2003 г. Принята к печати 4 февраля 2003 г.)

Методом эмиссионной мессбауэровской спектроскопии на изотопе ⁵⁷Co(^{57m}Fe) выявлена зависимость зарядового состояния примесных атомов железа в GaAs от положения уровня Ферми в запрещенной зоне, идентифицированы нейтральные и ионизованные состояния примесных атомов как в приповерхностной (они входят в состав ассоциатов с вакансиями решетки), так и в объемной областях (они входят в виде изолированной примеси замещения) материала. Для частично компенсированных образцов в объемной области материала обнаружен процесс быстрого электронного обмена между нейтральными и ионизованными акцепторными центрами железа, осуществляемый дырками через валентную зону.

1. Введение

Проблема поведения примесных атомов железа в арсениде галлия неоднократно привлекала внимание Д.Н. Наследова (см., например, ставшую классической, работу "Свойства арсенида галлия, легированного железом и никелем" [1]), и именно по инициативе Дмитрия Николаевича были начаты исследования примесных атомов железа в GaAs методом абсорбционной мессбауэровской спектроскопии [2,3]. В этом варианте спектроскопии исследуемое вещество является поглотителем (для случая изотопа ⁵⁷Fe оно включает в свой состав атомы железа) и при этом используется излучение стандартного источника с одиночной линией испускания (для случая ⁵⁷Fe таким источником служат радиоактивные ядра ⁵⁷Со, введенные в структуру кубического немагнитного кристалла). Основной недостаток абсорбционной спектроскопии в случае его использования для исследования примесных атомов — предельная чувствительность не превышает 10^{18} ат/см³. Поскольку концентрация железа в образцах GaAs: Fe, полученных методом зонной перекристаллизации, была $\sim 10^{20} \, {\rm ar/cm^3}$ (что значительно превышает предел растворимости железа в GaAs, составляющий $2 \cdot 10^{18} \text{ ar/cm}^3$ [1]), мессбауэровские спектры были приписаны не примесным атомам железа, а выделениям типа FeGa_{1,3} [2,3], и стала очевидной необходимость использования для подобных исследований эмиссионного варианта мессбауэровской спектроскопии на изотопе ⁵⁷Co(^{57m}Fe).

В эмиссионном варианте спектроскопии исследуемый образец является источником γ -квантов (для случая ⁵⁷Fe в образец вводится радиоактивный изотоп ⁵⁷Co) и его излучение анализируется с помощью стандартного поглотителя с одиночной линией поглощения (для случая ⁵⁷Fe чаще всего используется поглотитель K₄Fe(CN)₆ · 3H₂O). Чувствительность эмиссионной мессбауэровской спектроскопии для случая ⁵⁷Co(^{57m}Fe) достигает ~ 10¹³ ат/см³. Однако следует иметь в виду, что информация, получаемая из эмиссионных мессбау-

эровских спектров, относится к материнскому атому $({}^{57}Co)$ по положению зонда в решетке и к дочернему (^{57m}Fe) по электронному состоянию зонда. В частности, Мастеров и др. продемонстрировали эффективность последней методики на примере исследования примесных атомов железа в фосфиде галлия [4,5]: были идентифицированы нейтральные и ионизованные примесные центры железа, а также процесс быстрого электронного обмена между нейтральными и ионизованными центрами железа. Однако последнего явления не наблюдалось для случая примесных атомов ⁵⁷Co(^{57m}Fe) в GaAs [5]. Кроме того, следует иметь в виду, что диффузионное распределение кобальта и железа в соединениях типа А^{ШВV} характеризуется двумя участками — приповерхностным и объемным, причем для приповерхностного участка наблюдается повышенная концентрация примесных атомов и вакансий [6]. Поэтому следует ожидать различного поведения примесных атомов железа в приповерхностной и объемной областях кристалла. Этот вопрос также остается открытым.

В настоящей работе возможности эмиссионной мессбауэровской спектроскопии на изотопе ⁵⁷Co(^{57m}Fe) используются для идентификации нейтральных и ионизованных состояний примесных атомов железа в приповерхностной и объемной частях GaAs, а также для наблюдения быстрого электронного обмена между нейтральными и ионизованными центрами железа в объемной части GaAs.

2. Методика эксперимента

Эмиссионные мессбауэровские спектры ⁵⁷Со(^{57m}Fe) измерялись на промышленном спектрометре CM-22201 при 295 и 78 К. В качестве стандартного поглотителя использовался K_4 Fe(CN)₆ · 3H₂O с поверхностной плотностью 0.05 мг/см² по ⁵⁷Fe. За аппаратурную ширину спектральной линии ⁵⁷Fe принималась ширина мессбауэровского спектра указанного поглотителя с источником ⁵⁷Co в палладии: $\Gamma = 0.26(2)$ мм/с. Исследуемые образцы GaAs, легированные ⁵⁷Co, служили ис-

точниками. Изомерные сдвиги δ мессбауэровских спектров ${}^{57}Co({}^{57m}Fe)$ приводятся относительно поглотителя $K_4Fe(CN)_6 \cdot 3H_2O$.

Для идентификации нейтральных и ионизованных центров железа были использованы монокристаллические образцы GaAs *n*- и *p*-типов ($p = 1.6 \cdot 10^{18} \, \mathrm{cm}^{-3}$ и $n = 1.6 \cdot 10^{18} \,\mathrm{cm}^{-3}$ при 295 К). На поверхность образца из аммиачного раствора безносительного препарата ⁵⁷CoCl₂ электролитически осаждался кобальт, и образцы подвергались диффузионному отжигу в вакуумированных кварцевых ампулах в присутствии порошка GaAs (для уменьшения испарения мышьяка) при 1025°C в течение 24 ч. После диффузии образцы обрабатывались в смеси НF и HNO₃ (для удаления непродиффундировавшего ⁵⁷Со) и с поверхности удалялся слой толщиной ~ 20 мкм (концентрация кобальта в нем, определенная методом радиоактивных индикаторов, составляла $\sim 10^{18} \, {\rm сm}^{-3}$). Этот слой служил мессбауэровским источником для исследования состояния примесных атомов ⁵⁷Co(^{57m}Fe) в приповерхностном слое (образцы I и II с концентрациями носителей тока соответственно $p = 2 \cdot 10^{18} \text{ см}^{-3}$ и $n = 2 \cdot 10^{18} \text{ см}^{-3}$). Затем удалялся второй слой толщиной ~ 150 мкм и оставшийся образец (в нем концентрация кобальта составляла $\sim 5 \cdot 10^{16} \, \mathrm{cm}^{-3})$ служил мессбауэровским источником для исследования состояния примесных атомов ⁵⁷Co(^{57m}Fe) в объемной части образца (образцы III и IV с концентрациями носителей тока соответственно $p = 2 \cdot 10^{18} \,\mathrm{cm}^{-3}$ и $n = 2 \cdot 10^{18} \,\mathrm{cm}^{-3}$). Тип проводимости образцов после диффузионного отжига не изменялся.

Для исследования процесса быстрого электронного обмена между нейтральными и ионизованными центрами железа в объемной части материала был использован монокристаллический образец GaAs *n*-типа $(n = 5 \cdot 10^{16} \text{ см}^{-3} \text{ при } 295 \text{ K})$, в который по описанной выше диффузионной методике вводился ⁵⁷Со (время диффузионного отжига составляло 5 мин). С поверхности образца удалялся непродиффундировавший ⁵⁷Со, удалялся слой толщиной ~ 40 мкм и затем последовательно снимались слои, содержащие концентрации кобальта ~ $1.5 \cdot 10^{17}$ (образец VI), ~ $8 \cdot 10^{16}$ (образец VI) и ~ $5 \cdot 10^{16} \text{ см}^{-3}$ (образец VII), которые и служили мессбауэровскими источниками.

Чтобы обнаружить процесс быстрого электронного обмена между нейтральными и ионизованными центрами железа в приповерхностной области материала, был приготовлен мессбауэровский источник на основе монокристаллического GaAs *n*-типа ($n = 3 \cdot 10^{17}$ см⁻³ при 295 K), в который по описанной выше диффузионной методике вводился ⁵⁷Со (время диффузионного отжига составляло 24 ч). С поверхности образца удалялся непродиффундировавший ⁵⁷Со, снимался слой толщиной ~ 20 мкм (концентрация кобальта в нем составляла ~ 10^{18} см⁻³) и этот слой служил мессбауэровским источником (образец VIII).

3. Экспериментальные результаты и их обсуждение

Как уже отмечалось, из-за малой растворимости железа в GaAs для исследования состояния примесных атомов железа возможно использование лишь эмиссионного варианта мессбауэровской спектроскопии, когда в GaAs методом диффузионного легирования вводится радиоактивный изотоп ⁵⁷Co, после распада которого образуется мессбауэровский зонд ^{57m}Fe. При анализе экспериментальных результатов следует иметь в виду, что $N_{\rm Co} \gg N_{\rm Fe}$ (здесь $N_{\rm Co}$, $N_{\rm Fe}$ — концентрации в GaAs примесных атомов кобальта и железа), так что положение уровня Ферми в запрещенной зоне полупроводника определяется концентрациями и положением энергетических уровней, создаваемых примесными атомами кобальта и фоновой примеси (цинк для дырочных и теллур для электронных образцов).

Согласно электрическим измерениям, примесные атомы железа и кобальта образуют в запрещенной зоне GaAs глубокие акцепторные уровни, лежащие на 0.59(2) и 0.54(3) эВ выше потолка валентной зоны [7]. Следовательно, только нейтральные центры железа [Fe]⁰ должны наблюдаться в спектрах дырочных образцов (когда уровень Ферми находится вблизи потолка валентной зоны), и только ионизованные центры железа [Fe]⁻ в электронных образцах, когда $N_{\text{Te}} > N_{\text{Co}}$ и уровень Ферми находится вблизи дна зоны проводимости (здесь N_{Te} — концентрация доноров).

Как видно из рис. 1, тонкая структура мессбауэровских спектров зависит как от типа проводимости исходного образца, так и от местонахожде-

Рис. 1. Эмиссионные мессбауэровские спектры при 295 К примесных атомов ⁵⁷Co(⁵⁷Fe) в GaAs: в приповерхностной (a, b) и объемной (c, d) частях образцов *n*- и *p*-типа $(p = 2 \cdot 10^{18} \text{ см}^{-3} (a, c)$ и $n = 2 \cdot 10^{18} \text{ см}^{-3} (b, d)$). Спектры измерены на образцах: a - I, b - II, c - III, d - IV.

Физика и техника полупроводников, 2003, том 37, вып. 8

ния примесных атомов ⁵⁷Co(^{57m}Fe) (приповерхностная или объемная области). Мессбауэровский спектр примесных атомов ⁵⁷Co(^{57m}Fe) в приповерхностной области дырочного образца I (рис. 1, a) представляет собой квадрупольный дублет ($\delta = 0.45(2)$ мм/с, квадрупольное расщепление $E_0 = 0.95(3)$ мм/с, ширина компонент квадрупольного дублета $\Gamma = 0.55(3) \text{ мм/с},$ спектр I), тогда как для электронного образца II $(N_{\rm Te} > N_{\rm Co})$ спектр представляет собой одиночную уширенную линию ($\delta = 0.60(2)$ мм/с, $E_O = 0.20(3)$ мм/с, $\Gamma = 0.56(2)$ мм/с, спектр II, рис. 1, *b*). Параметры спектров I и II слабо зависят от температуры измерения (295 или 78 K). Наличие в спектре I квадрупольного расщепления свидетельствует об образовании в приповерхностной области ассоциатов типа "кобальт-вакансия", причем дочерние атомы железа ^{57m}Fe после радиоактивного распада ⁵⁷Со остаются в составе таких ассоциатов. Изомерный сдвиг спектра I отвечает трехвалетному железу 57m Fe³⁺ с электронной конфигурацией $3d^5$. Следовательно, и материнские атомы кобальта в составе этих ассоциатов находятся в трехвалентном состоянии ⁵⁷Co³⁺. Зависимость изомерного сдвига спектров примесных атомов железа в приповерхностной области от типа проводимости образцов свидетельствует об электрической активности указанных ассоциатов. В дырочном образце I ассоциаты находятся в нейтральном состоянии, и в их состав входят ионы ${}^{57}\text{Co}^{3+}({}^{57m}\text{Fe}^{3+})$ с незавершенной системой тетраэдрических связей, что и приводит к большому квадрупольному расщеплению мессбауэровского спектра І. В электронном образце ІІ указанные ассоциаты ионизуются, и в их состав входят ионы ${}^{57}\text{Co}^{2+}({}^{57m}\text{Fe}^{2+})$ с завершенной системой тетраэдрических связей. Как следствие, квадрупольное расщепление спектра II значительно меньше, чем квадрупольное расщепление спектра I.

Мессбауэровские спектры примесных атомов ⁵⁷Co(^{57m}Fe) в объемной области дырочного образца III (спектр III, рис. 1, c) и электронного образца IV (спектр IV, рис. 1, d) представляют собой одиночные несколько уширенные линии $(\Gamma = 0.50(2) \text{ mm/c})$ с различающимися изомерными сдвигами: минимальный слвиг наблюдается для дырочного образца $(\delta = 0.38(2) \text{ мм/c})$, максимальный — для электронного образца ($\delta = 0.63(2)$ мм/с). Параметры спектров слабо зависят от температуры измерения. Очевидно, что спектр III следует отнести к изолированным нейтральным акцепторным центрам железа [^{57m}Fe]⁰, образовавшимся после радиоактивного распада изолированных нейтральных акцепторных центров кобальта $[{}^{57}Co]^0$ (изомерный сдвиг δ_n), а спектр IV к изолированным ионизованным акцепторным центрам железа [^{57m}Fe]⁻, образовавшимся после радиоактивного распада изолированных ионизованных акцепторных центров кобальта $[{}^{57}$ Co $]^-$ (изомерный сдвиг δ_i). Величина δ_n типична для изомерных сдвигов мессбауэровских спектров соединений трехвалентного железа с электронной

Рис. 2. Эмиссионные мессбауэровские спектры примесных атомов ⁵⁷Co(⁵⁷Fe) в объемной части GaAs ($n = 5 \cdot 10^{16} \text{ см}^{-3}$) при 295 (a-c) и 78 K (d-f). Концентрация кобальта: $1.5 \cdot 10^{17}$ (a, b), $8 \cdot 10^{16}$ (b, e) и $5 \cdot 10^{16} \text{ см}^{-3}$ (c, f). Спектры измерены на образцах: a, d — V; b, e — VI; c, f — VII.

конфигурацией $3d^5$. Такой вывод находится в согласии с данными исследования GaAs: Fe методом ЭПР [8].

Возрастание изомерного сдвига мессбауэровских спектров 57 Co(57m Fe) при переходе от центров $[{}^{57m}$ Fe]⁰ к центрам $[{}^{57m}$ Fe]⁻ свидетельствует об уменьшении электронной плотности на ядрах 57m Fe. По-видимому, ионизация центра $[{}^{57m}$ Fe]⁰ сопровождается увеличением заселенности 3d-оболочки железа, причем для количественной оценки изменения изомерного сдвига следует воспользоваться соотношением

$$\Delta = \delta_n - \delta_i = \alpha \big(|\Psi_n(0)|^2 - |\Psi_i(0)|^2 \big), \tag{1}$$

где α — калибровочная константа (α = $0.23a_0^{-3}$ мм/с [9]), $|\Psi_n(0)|^2$, $|\Psi_i(0)|^2$ — электронные плотности на ядрах железа для центров [57m Fe]⁻ и [57m Fe]⁰ (они рассчитаны в работе [10]), a_0 — боровский радиус.

Если центры [57m Fe]⁰ и [57m Fe]⁻ имеют электронные конфигурации $3d^5$ и $3d^6$ соответственно, то теоретическое значение $\Delta_{theor} = 0.58$ мм/с, и эта величина существенно отличается от экспериментального значения $\Delta_{exp} = 0.25(2)$ мм/с. Расхождения наблюдаемых и расчетных величин Δ объясняются тем, что в расчетах не учтена отличная от нуля заселенность 4s-орбитали железа, которая изменяется при переходе от [57m Fe]⁰ к [57m Fe]⁻.

Мессбауэровские спектры примесных атомов 57 Co(57m Fe) в объемной области частично компенсированных образцов V, VI и VII (спектры V, VI и VII на рис. 2, *a*, *b*, *c*) при комнатной температуре представляют собой одиночные несколько уширенные линии ($\Gamma = 0.50(2)$ мм/с) с изомерными сдвигами, монотонно изменяющимися по мере возрастания степени компенсации (0.50(2), 0.56(2), 0.63(2) мм/с для спектров V, VI и VII соответственно). Однако при 78 К изомерные сдвиги спектров этих образцов оказались одинаковыми (0.62–0.63 мм/с) и соответствуют ионизованным центрам [^{57m}Fe]⁻ (см. рис. 2, *d*, *e*, *f*).

Для объяснения особенностей спектров V, VI и VII следует иметь в виду, что при выполнении условия $N_{\rm Co} > N_{\rm Te}$ уровень Ферми привязан к уровню кобальта с энергией $E_{\rm Co}$:

$$\mu = E_{\rm Co} - kT \ln\beta_{\rm Co}G,\tag{2}$$

где $\beta_{\rm Co}$ — фактор вырождения уровня кобальта; $G = (N_{\rm Co} - N_{\rm Te} - p + n)/(N_{\rm Te} + p - n) \approx (N_{\rm Co} - N_{\rm Te})/N_{\rm Te};$ n, p — концентрации электронов и дырок.

Следовательно,

$$P = N_n/N_i = G[\beta_{\rm Co}/\beta_{\rm Fe}] \exp\left[(E_{\rm Fe} - E_{\rm Co})/kT\right], \qquad (3)$$

где N_n, N_i — концентрации нейтральных и ионизованных центров железа, β_{Fe} — фактор вырождения уровня железа, E_{Fe} — энергия уровня Fe.

Таким образом, при достаточно близких величинах $E_{\rm Fe}$ и $E_{\rm Co}$, варьируя концентрации кобальта $N_{\rm Co}$ и теллура $N_{\rm Te}$, можно добиться $P \approx 1$. Тонкая структура эмиссионных мессбауэровских спектров для последнего случая будет зависеть от соотношения между временем жизни мессбауэровского уровня 57m Fe ($\tau_0 \approx 10^{-7}$ с) и временем электронного обмена τ между [57m Fe]⁰ и [57m Fe]⁻.

1. Если $\tau \ll \tau_0$, то в мессбауэровском спектре будет наблюдаться одна линия, с изомерным сдвигом

$$\delta = (\delta_i + P\delta_n)/(P+1), \tag{4}$$

отвечающая "усредненному" состоянию железа, возникающему за счет быстрого электронного обмена между $[^{57m}Fe]^0$ и $[^{57m}Fe]^-.$

2. Если $\tau \gg \tau_0$, то при условии электрической активности материнских атомов кобальта в мессбауэровском спектре будет наблюдаться одна линия, отвечающая нейтральным центрам [^{57m}Fe]⁰, тогда как при условии электрической неактивности кобальта в мессбауэровском спектре будут наблюдаться две линии, отвечающие нейтральным [^{57m}Fe]⁰ и ионизованным [^{57m}Fe]⁻ центрам железа.

Очевидно, что спектры V, VI и VII демонстрируют картину быстрого электронного обмена между нейтральными и ионизованными центрами железа в объемной части материала, возникающую при нахождении уровня Ферми μ вблизи энергетического уровня железа $E_{\rm Fe}$. Образцы III, IV и V отвечают условию $P \approx 1$: поскольку концентрация теллура во всех образцах была $5 \cdot 10^{16}$ см⁻³, величина G в них изменялась от 2 до 0, а уровень Ферми перемещался от середины запрещенной зоны (при G = 0) до положения на несколько kT ниже $E_{\rm Co}$ (при G = 2). На рис. 3 показана расчетная зависимость P от G, и она соответствует значению ($\beta_{\rm Co}/\beta_{\rm Fe}$) exp[($E_{\rm Fe} - E_{\rm Co}$)/kT] = 0.53(3). По-

Рис. 3. Зависимость $P = N_n/N_i$ от $G = (N_{\rm Co} - N_{\rm Te})/N_{\rm Te}$ (здесь $N_{\rm Co}, N_{\rm Te}, N_n$ и N_i — концентрации кобальта, теллура, нейтральных и ионизованных центров железа). Прямая соответствует значению ($\beta_{\rm Co}/\beta_{\rm Fe}$) exp[($E_{\rm Fe} - E_{\rm Co}$)/kT] = 0.53(3).

лагая $\beta_{\rm Co}/\beta_{\rm Fe} \approx 1$ (поскольку эта величина не может сильно отличаться от единицы), получим $E_{\rm Fe} = E_{\rm Co} - 0.016(3)$ эВ. Эта величина находится в согласии с данными [7].

Таким образом, обнаружен быстрый ($\tau \ll \tau_0$) электронный обмен между нейтральными и ионизованными акцепторными центрами железа, находящимися в объемной части частично компенсированного GaAs. Этот обмен реализуется путем захвата центром [^{57m}Fe]⁻ дырки с последующим ее забросом в валентную зону. Для такого процесса время жизни ионизованного центра [^{57m}Fe]⁻ τ_i определяется скоростью захвата этим центром дырки:

$$\tau_i = 1/p\sigma V, \tag{5}$$

где p — концентрация дырок, V — их тепловая скорость, σ — сечение захвата дырки центром [Fe]⁻.

Согласно холловским измерениям, для исследованных образцов $p = 10^{15}$ см⁻³, $V = 10^7$ см/с, и, используя $\sigma = 10^{-13}$ см² (нижний предел для сечения захвата дырки кулоновским центром), получим $\tau_n = \tau_i = 10^{-9}$ с (здесь τ_n — время жизни центра [57m Fe]⁰), т.е. за время τ_0 происходит более 10^2 актов перезарядки центров железа и в мессбауэровском спектре наблюдается "усредненное" состояние примесных центров железа.

Можно попытаться уменьшить частоту электронного обмена путем понижения температуры измерения спектров. Однако при 78 К спектры образцов V, VI и VII отвечают центрам [57m Fe]⁻ (см. рис. 2). Это свидетельствует о температурном сдвиге уровня Ферми, а не о замедлении процесса электронного обмена (в последнем случае в эмиссионном мессбауэровском спектре наблюдалось бы только состояние [57m Fe]⁰).

Рис. 4. Эмиссионный мессбауэровский спектр при 295 К примесных атомов 57 Co(57 Fe) в приповерхностной части образца VIII — GaAs *n*-типа ($n = 3 \cdot 10^{17}$ см ${}^{-3}$). Показаны положения квадрупольных дублетов, отвечающих спектрам типа I и II для образцов I и II.

Мы попытались обнаружить процесс электронного обмена между нейтральными и ионизованными центрами железа в приповерхностной области частично компенсированного GaAs (образец VIII). Однако, как видно из рис. 4, мессбауэровский спектр такого образца при 295 (спектр VIII, рис. 4) представляет собой наложение спектров типа I (он соответствует ионам 57m Fe³⁺, входящим в состав ассоциатов примесных атомов с вакансиями) и II (он соответствует ионам 57m Fe²⁺, входящим в состав ассоциатов с вакансиями).

Для объяснения особенностей спектра VIII следует иметь в виду, что электронный захват в ⁵⁷Со сопровождается испусканием оже-электронов и атом железа оказывается многократно ионизованным ${}^{57\mathrm{m}}\mathrm{Fe}^{n+}$ $(n\approx7)$. Такой ион является эффективным центром захвата ожеэлектронов (максимальная энергия оже-электронов не превышает 100 эВ, что соответствует средней длине пробега $\lambda_0 \approx 20$ Å), причем нейтрализация иона ^{57m}Fe^{*n*+} до устойчивых валентных состояний происходит за время $\sim 10^{-12}$ с. Однако форма стабилизации дочернего атома (^{57m}Fe²⁺ или ^{57m}Fe³⁺) зависит как от природы электрической активности центра железа, так и от концентрации в решетке центров захвата электронов. Учитывая, что в спектре VIII присутствуют оба состояния железа, следует сделать вывод, что этот спектр демонстрирует неравновесную ситуацию ($\tau \gg \tau_0$), возникающую в процессе нейтрализации состояний ^{57m}Feⁿ⁺ в решетке GaAs, а доля 57mFe³⁺ в спектре VIII соответствует доле атомов ⁵⁷Co³⁺, имеющих в ближайшем окружении (на расстоянии λ₀) центры захвата электронов (тогда как атомы ${}^{57}\mathrm{Co}^{2+}$ на расстоянии λ_0 центров захвата электронов не имеют).

4. Заключение

Методом эмиссионной мессбауэровской спектроскопии на изотопе ⁵⁷Co(^{57m}Fe) показано, что локальная структура примесных центров железа различна для приповерхностной и объемной областей кристалла. В приповерхностной области, где концентрация примесных атомов составляет $\sim 10^{18}\,\text{сm}^{-3},$ они входят в состав ассоциатов с вакансиями решетки, тогда как в объемной области, где концентрация примесных атомов не превышает $\sim 5 \cdot 10^{16} \,\mathrm{cm^{-3}}$ — в виде изолированной примеси замещения. Продемонстрирована зависимость зарядового состояния примесных атомов железа в GaAs от положения уровня Ферми в запрещенной зоне. Идентифицированы нейтральные и ионизованные акцепторные состояния примесных атомов как в приповерхностной, так и в объемной областях материала: в дырочных материалах железо стабилизируется с электронной конфигурацией 3d⁵, а в электронных — с электронной конфигурацией 3d⁶. Для частично компенсированных образцов GaAs в объемной области материала в области температур 78-295 К обнаружен процесс быстрого электронного обмена между нейтральными и ионизованными акцепторными центрами железа, осуществляемый дырками через валентную зону.

Список литературы

- H.М. Колчанова, Д.Н. Наследов, Г.Н. Талалакин. ФТП, 4, 134 (1970).
- [2] Г.Б. Ильменков, И.Ф. Миронов, Д.Н. Наследов, Ю.С. Сметанникова, Б.А. Шустров, В.К. Ярмаркин. ФТТ, 13, 1407 (1971).
- [3] В.К. Исаев-Иванов, В.Ф. Мастеров, Д.Н. Наследов, В.К. Ярмаркин. ФТТ, 16, 2068 (1974).
- [4] В.Ф. Мастеров, Ф.С. Насрединов, С.А. Немов, П.П. Серегин. ФТП, **30**, 840 (1996).
- [5] В.Ф. Мастеров, Ф.С. Насрединов, С.А. Немов, П.П. Серегин. ФТП, **30**, 884 (1996).
- [6] А.И. Блашку. Автореф. канд. дис. (Кишинев, Политехн. ин-т, 1973).
- [7] В.И. Фистуль, А.М. Агеев. ФТТ, 7, 3681 (1965).
- [8] M. de Wit, T.L. Estle. Phys. Rev., 132, 195 (1963).
- [9] K.T. Duff. Phys. Rev., 9, 66 (1974).
- [10] J. Blomquist. J. Chem. Phys., 55, 141 (1971).

Редактор Т.А. Полянская

A Mossbauer study of Fe-impurities in gallium arsenide

P.P. Seregin, T.R. Stepanova, Yu.V. Kozhanova, V.P. Volkov

St. Petersburg State Polytechnical University, 195251 St. Petersburg, Russia

Abstract Using Mossbauer emission spectroscopy it has been shown on ${}^{57}\text{Co}({}^{57\text{m}}\text{Fe})$ isotope that there is a charge state dependence of Fe-impurity atoms GaAs on the Fermy level position in the band gap.