Синтез и физические свойства стекол в системах Si(Ge)-Se-Te

© Л.А. Кулакова[¶], Б.Т. Мелех, В.И. Бахарев, В.Х. Кудоярова

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 23 декабря 2002 г. Принята к печати 27 декабря 2002 г.)

Синтезированы тройные теллуридные стекла Si₁₅Ge(Ga)₅Te₈₀, Si_{19.7}Te_{78.7}Se_{1.6}, Si_{19.2}Te_{76.8}Se₄ и Ge₁₉Te₇₂Se₉. В широком интервале температур и частот исследованы электрические, акустические и акустооптические свойства, а также дисперсия оптического пропускания полученных сплавов. Проведен сравнительный анализ результатов. Обсуждаются возможные механизмы наблюдаемых явлений. Показано, что синтезированный сплав Ge₁₉Te₇₂Se₉ является достойным конкурентом сплаву Si₂₀Te₈₀ при изготовлении высокоэффективных акустооптических устройств широкого применения среднего инфракрасного диапазона (2-12 мкм).

1. Введение

Обнаружение авторами высоких значений коэффициента акустооптического качества M_2 в стеклах двойной системы Si-Te [1] стимулировало проведение аналогичных исследований на стеклах тройных систем при катионном замещении кремния германием (или галлием) или при анионном замещении теллура селеном. Синтезированы стекла составов Si₁₅Ge(Ga)₅Te₈₀ с высокой стеклообразующей способностью: получены при закалке в конических ампулах диаметром ≥ 15 мм на воздухе. Обнаружено, что частичное замещение теллура селеном снижает стеклообразующую способность (СС) расплавов системы Si-Se-Te, поэтому получены стекла лишь составов Si_{19.7}Te_{78.7}Se_{1.6} и Si_{19.2}Te_{76.8}Se₄; сплав Si_{18.7}Te_{74.6}Se_{6.7} был кристаллическим и неустойчивым на воздухе из-за сильной гидратации.

Учитывая схожесть структуры стекол Si-Te и Ge-Te, можно предположить, что стекла второй системы также будут обладать высокими акустооптическими характеристиками. Однако максимальная стеклообразующая способность расплавов ограничена возможностью получения стеклообразного состояния в конических ампулах диаметром (при закалке в ледяной воде) 5–6 мм для состава Ge₁₈Te₈₂. При частичном замещении теллура на селен, а именно для состава Ge₁₉Te₇₂Se₉, соответствующего по данным [2] тройной эвтектике, можно было ожидать существенного увеличения CC при сохранении структуры стекла, близкой к структуре Si₂₀Te₈₀. Эксперименты подтвердили высокую стеклообразующую способность этого состава, полученного при использовании конических ампул диаметром ≥ 15 мм.

Проведен комплекс исследований, включающий определение плотности ρ_0 , коэффициента преломления *n*, изучение температурных зависимостей электропроводности, а также дисперсии оптического пропускания различных сплавов: Si₁₅Ge(Ga)₅Te₈₀, Si_{19.7}Te_{78.7}Se_{1.6}, Si_{19.2}Te_{76.8}Se₄ и Ge₁₉Te₇₂Se₉. Исследованы акустические и акустооптические свойства.

2. Результаты и их обсуждение

Технология приготовления сплавов, а также соответствующие исследования выполнены с использованием методик, подробно представленных в работе [1].

2.1. Электрические свойства

Температурные зависимости электросопротивления $\rho(T)$ стекол Si₁₅Ge(Ga)₅Te₈₀, Si_{19.7}Te_{78.7}Se_{1.6}, Si_{19.2}Te_{76.8}Se₄ и Ge₁₉Te₇₂Se₉ представлены на рис. 1–3. Видно, что частичная замена теллура селеном в стеклах Si_{19.7}Te_{78.7}Se_{1.6}, Si_{19.2}Te_{76.8}Se₄ приводит (рис. 1) (в отличие от стекол Si₂₀Te₈₀) к появлению трех участков с энергией активации *E*, уменьшающейся при понижении температуры, что может свидетельствовать об увеличении дефектности структуры сплавов. Частичная замена теллура селеном в германиевом стекле

Рис. 1. Температурные зависимости электросопротивления стекол: $I - \text{Si}_{19.7}\text{Te}_{78.7}\text{Se}_{1.6}$, $2 - \text{Si}_{19.2}\text{Te}_{76.8}\text{Se}_{4}$. Энергия активации *E*, эВ: a - 0.15, b - 0.10, c - 0.06.

E-mail: L.Kulakova@pop.ioffe.ru Fax: (812)5156747

Рис. 2. Температурная зависимость электросопротивления стекла Ge₁₉Te₇₂Se₉. Энергия активации E = 0.44 эВ.

Рис. 3. Температурные зависимости электросопротивления стекол: $I - Si_{15}Ga_5Te_{80}$, E = 0.37 эВ; $2 - Si_{15}Ge_5Te_{80}$, E = 0.42 эВ.

Ge₁₉Te₇₂Se₉ приводит к существенному увеличению стеклообразующей способности и одному участку на зависимости $\rho(T)$ с энергией активации, существенно превышающей аналогичные величины для стекол Si_{19.7}Te_{78.7}Se_{1.6}, Si_{19.2}Te_{76.8}Se₄ (рис. 2). Частичная замена кремния германием или галлием в стеклах

 $Si_{15}Ge(Ga)_5Te_{80}$ не приводит к существенному уменьшению CC стекол этих составов, что согласуется с наличием одного участка на зависимости $\rho(T)$ (рис. 3). Однако оптическая прозрачность этих стекол существенно (на порядок) ниже, чем стекла $Si_{20}Te_{80}$, поэтому основное внимание при изучении оптических и фотоупругих свойств нами уделялось сплаву $Ge_{19}Te_{72}Se_{9}$ и частично сплавам $Si_{19.7}Te_{78.7}Se_{1.6}$ и $Si_{19.2}Te_{76.8}Se_{4.}$

2.2. Акустические свойства

Нами измерены скорости продольного звука v в стеклах полученных составов (см. табл. 1). Из приведенных данных видно, что базовая матрица теллура существенным образом определяет упругие свойства теллуридных стекол.

Зависимость коэффициента поглощения звука α_{ac} от частоты f (рис. 4), а также зависимость скорости звука от температуры (рис. 5) были получены лишь для сплава Ge₁₉Se₉Te₇₂, поскольку, как будет показано далее, он представляется наиболее интересным объектом с научной точки зрения и перспективным материалом для создания акустооптических устройств. В противоположность Ge₁₉Se₉Te₇₂, сплавы Si₁₅Ge₅Te₈₀ и Si₁₅Ga₅Te₈₀, вопреки ожиданиям, оказались хрупкими (напряженными), что скорее всего является следствием их высокой механической дефектности.

Сравнение величины и частотных зависимостей коэффициента поглощения звука для исследуемого сплава Ge₁₉Se₉Te₇₂ и ранее изученного нами сплава Si₂₀Te₈₀ приводит к двум основным выводам. В исследуемом сплаве в области низких частот поглощение звука меньше, а частотная зависимость оказывается более крутой, приближающейся к квадратичной зависимости, имеющей место в кристаллах.

Ранее нами было показано [3], что наблюдающаяся в сплаве $Si_{20}Te_{80}$ большая величина коэффициента поглощения звука, отличающаяся на 2 порядка от коэффициента поглощения в кристаллах, и его линейная частотная зависимость (рис. 4) являются следствием специфического строения стекол, обладающего системой двухъямных структурных дефектов с широким распределением, близким к равномерному, времен релаксации. Следовательно, отличие как величины, так и характера

Таблица 1. Основные упругие параметры исследуемых сплавов при $T = 300 \,\mathrm{K}$

Состав	υ,	$ ho_0,$	С ₁₁ ,	
	10 ⁵ см/с	γ/cm ³	10 ¹² дин / см ²	
$\begin{array}{c} Ge_{19}Se_9Te_{72}\\ Si_{19.7}Te_{78.7}Se_{1.6}\\ Si_{19.2}Te_{76.8}Se_4\\ Si_{15}Ge_5Te_{80}\\ Si_{15}Ga_5Te_{80}\\ Si_{20}Te_{80} \end{array}$	2.06	5.41	0.230	
	2.05	5.1	0.214	
	2.05	5.0	0.210	
	2.04	5.25	0.218	
	2.10	5.29	0.233	
	2.03	5.03	0.207	

Рис. 4. Частотные зависимости коэффициента поглощения звука в стеклах: *I* — Si₂₀Te₈₀, *2* — Ge₁₉Se₉Te₇₂.

Рис. 5. Температурная зависимость относительного изменения скорости звука в стеклах: точки — эксперимент, линии — теоретический расчет. $1 - Si_{20}Te_{80}$, $2 - Ge_{19}Se_9Te_{72}$.

частотной зависимости коэффициента поглощения в исследуемом сплаве Ge₁₉Se₉Te₇₂ может являться следствием того, что структура его менее дефектна.

Измерения скорости звука с целью исследования влияния состава на упругие свойства исследуемых стекол показали, что значения упругих модулей C_{11} (см. табл. 1) в Ge₁₉Se₉Te₇₂ выше, чем в Si₂₀Te₈₀. Температурные зависимости относительного изменения скорости в этих сплавах (рис. 5) также различаются. Расчет ангармонического вклада (обусловленного взаимодействием звуковой волны с тепловыми фононами), согласно выражению [3]

$$\frac{(\Delta v)^{\text{anh}}}{v(T_0)} = \frac{\bar{\gamma}^2 T_0 C_p(T_0)}{3v^2(T_0)} \left\{ 1 - \frac{T C_p(T)}{T_0 C_p(T_0)} \right\}, \qquad (1)$$

показал (рис. 5, кривая 1), что именно таким взаимодействием определяются наблюдаемые температурные зависимости скорости звука в Si₂₀Te₈₀, если принять значение усредненной постоянной (ангармонизма сил связи) Грюнайзена $\bar{\gamma} = 1.45$. В (1) T, C_p — температура и теплоемкость при постоянном давлении соответственно, $T_0 = 300$ К. Расчет согласно (1) для Ge₁₉Se₉Te₇₂ при $\bar{\gamma} \sim 1.39$ (рис. 5, кривая 2) показывает, что для согласия с экспериментальными данными v(T) необходимо, чтобы температурное поведение теплоемкости C_p^1 в этом сплаве отличалось от поведения в Si₂₀Te₈₀. Именно — наклон этой зависимости должен быть более крутым с переходом в область низких температур, т.е. $C_{p}^{1}(T)/C_{p}^{1}(T_{0}) \approx (T/T_{0})^{n}C_{p}(T)/C_{p}(T_{0}),$ где n = 0.9. Это означает качественное приближение к температурным зависимостям теплоемкости в кристаллах. Последнее хорошо согласуется с характером частотных зависимостей поглощения в исследуемом сплаве, которые, как отмечалось выше, отличаются от линейных зависимостей, типичных для стекла, наблюдавшихся в сплаве Si₂₀Te₈₀, качественно приближаясь к квадратичным, характерным для кристаллов в низкочастотной области [3]. Это удивительно, если учесть, что чаще всего увеличение числа компонент в сплаве (именно так обстоит дело в исследуемом сплаве Ge₁₉Se₉Te₇₂ по сравнению с Si₂₀Te₈₀) является предпосылкой для возникновения дефектов, в том числе и двухъямных, обусловливающих типичное для стекла поведение тепловых и упругих свойств. Однако очевидно, что отмеченное выше увеличение стеклообразующей способности, вызванное наличием сочетания селена и германия в теллуридном сплаве, не является единственно привлекательным следствием такого структурного ансамбля. По всей видимости, в такой структуре мы наблюдаем и минимизацию количества дефектных образований.

2.3. Оптические свойства

Обнаруженное нами низкое, не превышающее нескольких процентов в области прозрачности (диапазон длин волн $\sim 2-20$ мкм), оптическое пропускание (\bar{T}) стекол Si₁₅Ge(Ga)₅Te₈₀ является, по нашему мнению, следствием неоднородности оптических и механических свойств.

Пропускание сплавов Si–Te с добавлением Se представлено на рис. 6 (кривые l, 2), из которого видно, что оптическая прозрачность этих сплавов падает существенно с увеличением концентрации Se. Такое поведение пропускания можно объяснить рассеянием света на дефектах, которые соответствующим образом проявляются в температурной зависимости электросопротивления $\rho(T)$ (рис. 1).

Материал	Область прозрачности Δλ, мкм	α, cm ⁻¹	$lpha_{ m ac},\ { m dB/cm}$ $(f=100{ m M\Gamma u})$	λ, мкм	Поляризация света относительно направления распространения звука	$(M_2)'$
Si ₂₀ Te ₈₀	1.7-13	0.1	8	10.6 3.39 1.87		3500 3200 2800
$Ge_{19}Se_9Te_{72}$	2-18		4	3.39		3150
Ge	2 - 20	0.06	0.3	10.6		540
As ₂ Se ₃	0.9-11			1.15		700
a-Se	1-20			1.15 10.6	\downarrow \downarrow	776 692

Таблица 2. Акустооптические параметры сплавов системы Si(Ge)-Se-Te и других ИК материалов при T = 300 K

Примечание. $(M_2)' = M_2/(M_2)''$, где $(M_2)'' = 1.56 \cdot 10^{-18} c^3/r = \langle M_2 \rangle$ для кварцевого стекла). α — коэффициент оптического поглощения.

Исследование оптических свойств сплава Ge₁₉Se₉Te₇₂ показало, что обнаруженная нами выше (при акустических исследованиях) минимизация количества структурных дефектных образований проявляется и здесь. Во-первых, сплав обладает существенно более высокой оптической однородностью. Во-вторых, во всей области спектра пропускание сплава (рис. 6, кривая 4) выше, чем Si₂₀Te₈₀ (рис. 6, кривая 3). При этом оказывается, что наиболее ярко это проявляется в области длин волн генерации СО2-лазера (10.6 мкм), т.е. в области окна прозрачности атмосферы (что особенно важно).

Значение коэффициента преломления $n = 3.4 \pm 0.02$ для исследуемого сплава получено нами из коэффициента отражения. Оно оказывается выше, чем в сплаве $Si_{20}Te_{80}$ (n = 3.3).

Рис. 6. Дисперсия коэффициента оптического пропускания стекол: 1 — Si_{19.7}Te_{78.7}Se_{1.6}, 2 — Si_{19.2}Te_{76.8}Se₄, 3 — Si₂₀Te₈₀, 4 — Ge₁₉Se₉Te₇₂. Толщина стекол 6 мм.

2.4. Акустооптические свойства

Известно, что эффективность брэгговской дифракции света на ультразвуковых волнах определяется параметром акустооптической добротности М2. В линейном режиме (малые интенсивности звука)

$$I_1 = (1/2) I_0 M_2 P \left[\pi d / (\lambda \cos \theta) \right]^2,$$
(1)

$$(M_2)_{ik} = n_i^6 p_{ik}^2 / (\rho_0 v_k^3), \tag{2}$$

где I_1, I_0 — интенсивности дифрагированного и падающего света соответственно, Р — интенсивность звука, λ — длина волны света, d — ширина акустического пучка, θ — угол падения, n_i — коэффициент преломления, p_{ik} — компонента фотоупругого тензора, ρ_0 плотность кристалла, v_k — скорость звуковой волны, i, k = 1, 2, 3, 4, 5, 6, i — индекс поляризации света, k индекс деформации в матричном представлении.

Ранее нами было показано, что сплав Si20Te80 обладает рекордно высокой акустооптической эффективностью брэгговской дифракции в широком интервале ближнего и среднего инфракрасного (ИК) диапазона (табл. 2). Однако проблема заметных оптических неоднородностей материала требовала дальнейшего поиска оптимизации оптических свойств материала. Обнаруженное нами в сплаве Ge₁₉Se₉Te₇₂ существенное улучшение как акустических (более низкое поглощение звука в области рабочих для акустооптики частот ~ 100 МГц см. табл. 2), так и оптических (более низкое оптическое поглощение, большой коэффициент преломления n и оптическая однородность — см. табл. 2) характеристик делает этот сплав весьма привлекательным объектом для исследования акустооптических свойств. Предварительные данные (табл. 2) значений акустооптической добротности M_2 , полученные нами для $\lambda = 3.39$ мкм, показывают, что акустооптическая эффективность в этой области спектра не хуже, чем у Si₂₀Te₈₀. Из этого следует, что новый сплав Ge₁₉Se₉Te₇₂ представляется действительно весьма перспективным для создания приборов акустооптики. Поэтому целесообразно проведение более подробных и охватывающих более широкий диапазон оптического спектра акустооптических исследований.

3. Заключение

Таким образом, сравнительный анализ комплекса исследованных свойств тройных теллуридных стекол Si-Ge(Ga)-Те и Si(Ge)-Те-Se дал следующие результаты.

1) Показано, что базовая матрица теллура существенным образом определяет упругие свойства теллуридных стекол.

2) Наиболее совершенным оказался сплав $Ge_{19}Te_{72}Se_{9}$, обнаруживший ряд преимуществ по сравнению с изученным ранее [1] перспективным акустооптическим сплавом $Si_{20}Te_{80}$. Обладая достаточно высокой оптической однородностью, он является и более прозрачным. Последнее проявляется особенно ярко в области окна прозрачности атмосферы $\lambda \approx 10-11$ мкм (CO₂-лазер, $\lambda = 10.6$ мкм). Благодаря этому, а также более низкому акустическому затуханию, сплав $Ge_{19}Te_{72}Se_{9}$ является достойным конкурентом сплаву $Si_{20}Te_{80}$ при создании акустооптических модуляторов среднего ИК диапазона.

Работа выполнена при частичной поддержке Российского фонда фундаментальных исследований (грант 98-02-18305).

Список литературы

- Л.А. Кулакова, Б.Т. Мелех, Э.З. Яхкинд, Н.Ф. Картенко, В.И. Бахарев, Ю.П. Яковлев. ФТП, 35 (6), 658 (2001).
- [2] А. Фельц. Аморфные и стеклообразные неорганические тела (М., Мир, 1986) с. 347.
- [3] Л.А. Кулакова. Физика и химия стекла, **26** (6), 839 (2000).

Редактор Л.В. Шаронова

Synthesis and physical properties of Si(Ge)–Se–Te glasses

L.A. Kulakova, B.T. Melekh, V.I. Bakharev, V.H. Kudoyarova

loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract The Si₁₅Ge(Ga)₅Te₈₀, Si_{19.7}Te_{78.7}Se_{1.6}, Si_{19.2}Te_{76.8}Se₄ and Ge₁₉Te₇₂Se₉ glasses are synthesized. Electrical, acoustic and acoustooptic properties as well as the optical transmittance dispersion of alloys obtained are investigated in a wide range of temperatures and frequencies. A comparative analysis of investigated properties of glasses has been carried out. Feasible mechanisms of the phenomena are being discussed. It is shown, that Ge₁₉Te₇₂Se₉ alloy is more promising material as compared with Si₂₀Te₈₀ alloy for fabrication of different highly effective acoustooptic devices of the middle infrared range $(2-12\,\mu\text{m})$.