Нулевые аномалии транспортных характеристик однобарьерных гетероструктур GaAs/AIAs/GaAs как проявление резонансного туннелирования между параллельными двумерными электронными газами и подавление резонансного туннелирования в магнитном поле как проявление кулоновской щели в туннельной плотности состояний

© Ю.Н. Ханин[¶], Ю.В. Дубровский, Е.Е. Вдовин

Институт проблем технологии микроэлектроники и особо чистых материалов Российской академии наук, 142432 Черноголовка, Россия

(Получена 9 октября 2002 г. Принята к печати 28 октября 2002 г.)

В результате изучения туннельного транспорта электронов через однобарьерные гетероструктуры GaAs/AlAs/GaAs показано, что причиной "нулевых аномалий" — экстремумов в дифференциальной проводимости вблизи нулевого напряжения — в исследованных структурах является резонансное туннелирование между параллельными двумерными электронными газами в обогащенных слоях, образовавшихся по обе стороны барьеров из-за наличия в барьерах донорных примесей Si. Обнаружено подавление резонансного туннелирования между параллельными двумерными электронными газами в узких интервалах вблизи нулевого напряжения (туннельная щель) в сильном магнитном поле, параллельном направлению тока, когда в каждом из двумерных электронных газов заполнен только один уровень Ландау. Подавление обусловлено кулоновской щелью на уровне Ферми в туннельной плотности состояний. Этот эксперимент впервые обнаружил проявление кулоновской щели при туннельной плотности беспорядка или случайных флуктуаций потенциала на механизм формирования туннельной щели может оказаться заметным.

1. Введение

Проблема "нулевых аномалий" (zero bias anomaly) является для туннельных структур своеобразной проблемой века. Практически во всех экспериментах с обычными (не сверхпроводящими) туннельными структурами наблюдаются нулевые аномалии (пик сопротивления или пик проводимости вблизи нулевого напряжения), часто существенно искажающие транспортные характеристики и затрудняющие, таким образом, решение экспериментальных и прикладных задач. Подробный обзор ранних экспериментов такого рода и их обсуждение можно найти, например, в монографии Вольфа [1], где, как правило, для конкретных туннельных систем предложены различные модели для описания наблюдавшихся нулевых аномалий, хотя ряд экспериментов так и остался до сих пор без объяснения [2,3]. Туннельные гетероструктуры, несмотря на значительно более контролируемый, по сравнению с другими типами структур, состав, не являются в этом смысле исключением и традиционно демонстрируют наличие нулевых аномалий (см., например, [4,5]), причины которых не всегда ясны.

В отдельный класс можно выделить нулевые аномалии, проявляющиеся в дифференциальной проводимости туннельных структур в присутствии магнитного поля, такие как, например, туннельные щели, т. е. особенности, отражающие наличие кулоновской щели в плотности состояний при туннелировании между двумя двумерными электронными газами (ДЭГ, 2DEG). На настоящий момент существует значительное количество теоретических моделей, предсказывающих появление кулоновской щели на уровне Ферми в электронной плотности состояний для различных случаев туннелирования между параллельными ДЭГ, отличающихся друг от друга степенью беспорядка [6-10]. В то же время опубликованные результаты экспериментов, в которых наблюдалось проявление кулоновской щели при туннелировании между параллельными ДЭГ в магнитном поле $B \parallel I$, немногочисленны [8,11]. С этими результатами мы будем далее производить сравнение наших экспериментальных данных. Представленные в [8,11] результаты не описываются в полной мере ни одной из существующих теорий (в случае [8] на описание частично претендует работа [9]) и нашли себе на настоящий момент лишь качественное объяснение в рамках представлений о сильно коррелированной природе двумерных электронных систем (ДЭС, 2DES) в больших полях $B \parallel I$, когда заполнен лишь нижний уровень Ландау [8]. Упрощенно говоря, каждая ДЭС представляет собой в этом случае сильно коррелированную электронную жидкость (в ближнем порядке подобную вигнеровскому кристаллу). Щель в туннельной плотности состояний при туннелировании между ними отражает дополнительную энергию, необходимую для вырывания электрона, который затем будет участвовать в туннельном переходе, из сильно коррелированной электронной жидкости. Такая же добавочная энергия требуется и для

[¶] E-mail: khanin@ipmt-hpm.ac.ru

встраивания туннелирующего электрона в коррелированную электронную жидкость. В результате ширина щели в туннельной плотности состояний определяется, по порядку величины, энергией кулоновского взаимодействия электронов в ДЭС $E_{\rm C} = e^2 / \varepsilon \langle a \rangle$, где $\langle a \rangle$ среднее расстояние между электронами, є — диэлектрическая проницаемость. Вследствие этого становится ясно, почему при обсуждении подавления туннелирования в магнитном поле часто говорят о кулоновском барьере для туннелирования. Наконец, отметим, что существующие на настоящий момент эксперименты, в которых наблюдалось проявление кулоновской щели при туннелировании между параллельными ДЭС в поле $B \parallel I$, проводились с использованием образцов, ДЭС в которых обладали высокими подвижностями $\mu > 2 \cdot 10^5 \text{ см}^2 / (\text{B} \cdot \text{c})$. Поэтому такой важный вопрос, как роль беспорядка в формировании щели при туннелировании между ДЭС, остается открытым.

Основу содержания данной работы будут составлять описания следующих проведенных нами исследований туннелирования и магнитотуннелирования через однобарьерные гетероструктуры GaAs/AlAs/GaAs.

1. Проведены исследования магнитоосцилляций проводимости в магнитном поле $B \parallel I$ в однобарьерных гетероструктурах с разными толщинами барьеров. Анализ магнитоосцилляций показал, что причиной нулевых аномалий в дифференциальной проводимости этих структур является резонансное туннелирование (РТ) между параллельными ДЭГ в обогащенных слоях, образовавшихся по обе стороны барьеров из-за наличия в барьерах донорных примесей Si.

2. Проведены исследования транспорта через однобарьерные гетероструктуры с преднамеренно созданными по обе стороны барьера слоями ДЭГ с помощью δ -легирования прибарьерных областей Si донорами. Транспортные характеристики этих гетероструктур в области малых напряжений оказались полностью аналогичны характеристикам структур без δ -слоев Si, что подтвердило интерпретацию нулевых аномалий в структурах без δ -слоев как проявления РТ между параллельными ДЭГ.

3. Проведены исследования транспорта в магнитном поле $B \parallel I$ как через структуры с δ -легированием, так и без него. В обоих случаях полученные данные продемонстрировали в сильных полях (когда в каждом из ДЭГ по обе стороны барьера заполнен только один уровень Ландау) подавление РТ в узких интервалах вблизи нулевого напряжения, обусловленное формированием в условиях ультраквантового предела кулоновской щели на уровне Ферми в туннельной плотности состояний. Сравнение наших экспериментальных данных с результатами предыдущих экспериментов, в которых исследовалось туннелирование между ДЭГ с высокой подвижностью электронов, дало нам основание полагать, что в наших экспериментах впервые обнаружено проявление кулоновской щели при туннелировании между параллельными ДЭГ с низкой подвижностью в ультраквантовом пределе. Кроме того, аналогичность поведения

транспортных характеристик образцов с δ-легированием и без него явилась дополнительным доказательством интерпретации нулевых аномалий.

Магнитоосцилляции проводимости в однобарьерных гетероструктурах GaAs/AIAs/GaAs и особенности транспорта электронов через эти структуры в области малых напряжений смещения

В данном разделе будут представлены результаты исследования магнитоосцилляций проводимости в магнитном поле $B \parallel I$ в однобарьерных симметричных гетероструктурах, анализ которых показал, что причиной нулевых аномалий транспортных характеристик этих структур является РТ между параллельными ДЭГ в обогащенных слоях, образовавшихся по обе стороны барьеров из-за наличия в барьерах донорных примесей Si. Кроме того, будут представлены результаты исследования транспорта в поле $B \parallel I$, продемонстрировавшие подавление туннелирования между ДЭГ, обусловленное проявлением кулоновской щели в туннельной плотности состояний.

Исследовавшиеся нами образцы представляли собой однобарьерные гетеродиоды, выращенные методом молекулярно-лучевой эпитаксии на высоколегированных подложках N^+ -GaAs с ориентацией (100) при температуре 570°С. В качестве легирующей примеси использовался кремний, концентрация которого в подложках составляла $2 \cdot 10^{18}$ см⁻³.

Симметричные гетероструктуры состояли из следующей последовательности слоев:

- слой N^+ -GaAs толщиной 0.4 мкм, $N = 2 \cdot 10^{18}$ см⁻³;

- спейсер N⁻-GaAs толщиной 50 нм, $N = 2 \cdot 10^{16}$ см⁻³;

- нелегированный спейсер GaAs толщиной 10 нм;

– нелегированный барьер AlAs толщиной 2.5, 3.5 или 5.0 нм;

- нелегированный спейсер GaAs толщиной 10 нм;

- спейсер N^- -GaAs толщиной 50 нм, $N = 2 \cdot 10^{16}$ см⁻³; - контактный слой N^+ -GaAs толщиной 0.4 мкм, $N = 2 \cdot 10^{18}$ см⁻³.

Омические контакты изготавливались путем последовательного напыления слоев AuGe/Ni/Au и отжига при $T = 400^{\circ}$ C. Для создания меза-структур диаметром 100 мкм была использована стандартная технология химического травления. Дифференциальная проводимость G = dI/dV = f(V) и G = dI/dV = f(B) измерялась с использованием стандартной модуляционной методики.

Зависимости dI/dV = f(V) для образца с барьером 5 нм, измеренные при T = 4.2 К в интервале поля $B \parallel I$ от 0 до 15 Гл, представлены на рис. 1. Как видно из рисунка, в области малых напряжений зависимости демонстрируют наличие нулевой аномалии типа "пик про-

Рис. 1. Зависимости dI/dV = G(V) для образца с барьером толщиной 5 нм, измеренные при T = 4.2 K, в параллельном току магнитном поле от 0 до 15 Тл.

V, mV

водимости", связанной, как будет видно из дальнейшего, с РТ между ДЭГ по разные стороны барьера. Детали поведения туннельных характеристик с ростом B также будут прояснены позже, однако уже здесь стоит указать на подавление проводимости магнитным полем вблизи нулевых напряжений, начиная с B = 12 Тл, которое является, предположительно, проявлением кулоновской щели.

Аналогичные характеристики продемонстрировали образцы и с другими толщинами барьеров, однако наиболее яркие результаты измерений (с точки зрения величины нулевой аномалии и проявления кулоновской щели в магнитном поле) показал образец с барьером 2.5 нм (рис. 2). Вероятно, причиной несколько большей амплитуды нулевого резонанса (аномалии) в этом образце является наименьшая толщина туннельного барьера. Как видно из рис. 2, на характеристиках образца с барьерами 2.5 нм ярко проявляется подавление проводимости при $V \to 0$ при B > 8 Тл (туннельная щель). Зависимость параметра туннельной щели, выбранного как разность напряжений максимумов dI/dV = G = f(V), от магнитного поля В оказывается в достаточной степени линейной (аналогично [8,11]) и описывается выражением $\Delta \approx 0.3\omega_c$, где ω_c — циклотронная частота.

Однако вернемся к проблеме нулевых аномалий. Для выяснения их природы были проведены измерения зависимостей G(B) для всех типов образцов при различных напряжениях V. Магнитоосцилляции проводимости с ростом B при больших напряжениях V отражают формирование и движение уровней Ландау относительно уровня Ферми в эмиттерном аккумуляционном слое [12]. Их обработка в соответствии со стандартной процедурой позволяет определить значения энергии Ферми и концентрации электронов в аккумуляционном слое при данном напряжении. Типичный вид полученной нами зависимости G(B) представлен на рис. 3. Все типы образцов показывали наличие ясно различимых осцилляций при больших напряжения, с той лишь разницей, что осцилляции в образцах с барьерами 2.5 нм были значительно более уширенными (чем в образцах с барьерами 5.0 и 3.5 нм). Это, очевидно, связано с меньшим временем жизни электронов в эмиттерном аккумуляционном слое, ограниченном барьером 2.5 нм. Полученная в результате обработки осцилляций в образце с барьером 5 нм зависимость энергии Ферми от напряжения $E_{\rm F}(V)$ представлена на рис. 4. Подобные зависимости наблюдались и на остальных образцах. Экстраполяция данной зависимости к нулевому напряжению указывает на наличие значительной концентрации электронов $(\sim 2.5 \cdot 10^{11} \, \mathrm{cm}^{-2})$ в слое ДЭГ в отсутствие напряжения,

Рис. 2. Зависимости dI/dV = G(V) для образца с барьером толщиной 2.5 нм, измеренные при T = 4.2 К, в параллельном току магнитном поле от 0 до 15 Тл. Интервалы магнитного поля *B*, Тл: a = 0-8, b = 8-15.

Рис. 3. Зависимость dI/dV = G(V) для образца с барьером толщиной 5 нм, при напряжении смещения V = 900 мВ и T = 4.2 K.

Рис. 4. Зависимость энергии Ферми *E*_F от напряжения *V* в аккумуляционном слое образца с барьером 5 нм, полученная из анализа магнитоосцилляций. Сплошной линией показана линейная аппроксимация указанной зависимости.

причиной чего, вероятно, является существование при V = 0 остаточного обогащенного электронного слоя в эмиттерной прибарьерной области. Поскольку аналогичные зависимости энергии Ферми (и концентрации электронов) от напряжения были получены и для V < 0, вследствие симметричности наших структур следует полагать, что при V = 0 обогащенные слои с практически одинаковыми концентрациями электронов в них суще-

ствуют в прибарьерных областях по обе стороны барьера. Однако реальные значения концентраций электронов в обогащенных слоях в отсутствие напряжения будут, вероятно, существенно меньше, нежели полученные из экстраполяции зависимостей $E_F(V) \kappa V = 0$ при определенных величинах уширения уровней Ландау (которые были получены из обработки магнитоосцилляций при больших V). Здесь следует учитывать неприменимость представлений о линейном изменении параметров эмиттерного аккумуляционного слоя в области малых положительных напряжений, когда происходит исчезновение обогащенного слоя коллектора.

Таким образом, проведенный анализ указывает на то, что в данных образцах при V = 0 могут существовать обогащенные электронные слои по разные стороны от барьера. Совпадение энергий двумерных подзон в этих слоях, происходящее при $V \approx 0$, и приводит в соответствии с [11] к наличию локального максимума на зависимостях G(V) (пика проводимости). Наиболее вероятной причиной формирования таких слоев может быть присутствие в барьере положительно заряженных доноров Si, оказавшихся там вследствие остаточного легирования и диффузии из контактного слоя.

Проявление кулоновской щели при туннелировании между параллельными ДЭГ в однобарьерных гетероструктурах GaAs/Al_{0.4}Ga_{0.6}As/GaAs с δ-легированием

В данном разделе будут представлены результаты исследования переноса электронов через однобарьерные гетероструктуры GaAs/Al_{0.4}Ga_{0.6}As/GaAs, в которых параллельные слои низкоподвижного ДЭГ по обе стороны барьера были сформированы с помощью δ-легирования кремнием. Измерения в отсутствие магнитного поля продемонстрировали наличие пика проводимости G(V)при $V \to 0$, обусловленного РТ между такими параллельными ДЭГ в околобарьерных областях. Это явилось дополнительным подтверждением интерпретации нулевых аномалий, данной в предыдущем разделе. Основным же результатом описываемых в данном разделе исследований является наблюдение кулоновской щели в туннельной плотности состояний при туннелировании между ДЭГ с низкой подвижностью электронов, выразившееся в подавлении и расщеплении (туннельной щели) пика проводимости при $V \rightarrow 0$ в сильном магнитном поле В || І. Аналогичность проявлений кулоновской щели в структурах с б-легированием и без такового явилась еще одним независимым доказательством справедливости интерпретации природы нулевых аномалий в структурах без δ-легирования.

Исследовавшиеся здесь однобарьерные структуры GaAs/Al_{0.4}Ga_{0.6}As/GaAs отличались от использовавших-

Рис. 5. Зависимости dI/dV = G(V) для образца с δ -слоями, легированными Si, измеренные при T = 4.2 K, в интервале $B \parallel I$ от 0 до 15 Тл. Интервалы магнитного поля B, Тл: a = 0-7, b = 8-15. На вставке — зонная диаграмма исследованной структуры.

ся в экспериментах, описанных в предыдущем разделе, наличием преднамеренно созданных по обе стороны барьера слоев ДЭГ с помощью δ -легирования кремнием. Концентрация кремния в δ -слоях составляла $3 \cdot 10^{11}$ см⁻², а располагались эти слои на расстоянии 5 нм от барьера. Измерения осцилляций Шубникова–де-Гааза в данных структурах показали, что концентрация электронов в ДЭГ совпадает с предполагавшейся технологически концентрацией Si в δ -слоях. Кроме того, данные структуры отличались от предыдущих толщиной барьера, составлявшей 12 нм, и, что очевидно, составом барьерного слоя. Профиль дна зоны проводимости исследованных структур при $V \rightarrow 0$ представлен на вставке к рис. 5.

Зависимости dI/dV = G(V) для этих структур, измеренные при T = 4.2 К в интервале параллельных току магнитных полей от 0 до 15 Гл, представлены на рис. 5. Как видно из рис. 5, *a*, зависимость G(V) при B = 0 демонстрирует наличие заметного пика проводимости вблизи нулевого напряжения, обусловленного РТ между параллельными ДЭГ, расположенными по разные стороны барьера [11]. Природа пиков проводимости при боль-

ших напряжениях обсуждаться не будет. Наличие пика проводимости при $V \rightarrow 0$ в данных структурах, отличающихся от рассмотренных в предыдущем разделе лишь преднамеренно созданными слоями ДЭГ, подтверждает предложенную нами интерпретацию нулевых аномалий. Изменения проводимости с увеличением $B \parallel I$ при туннелировании между параллельными ДЭГ отражают, в соответствии с [12], формирование и движение относительно уровня Ферми уровней Ландау. С этой точки зрения колебания проводимости при $V \rightarrow 0$ с ростом B от 0 до 7 Тл легко объяснимы изменением плотности состояний на уровне Ферми в ДЭГ в магнитном поле. Существенно более слабые колебания $dI/dV \ (V \rightarrow 0)$ в образцах без δ -легирования в этом интервале B обусловлены, вероятно, меньшей концентрацией электронов в ДЭГ при сравнимых значениях уширения уровней Ландау. Явная структура особенностей, проявляющихся при отличных от нуля напряжениях, начиная с $B \approx 5 \, \text{Tr}$, связана с переходами между уровнями Ландау с различными индексами. По достижении B = 8 Тл, когда под уровнем Ферми в каждом ДЭГ остается только один уровень Ландау, проводимость при $V \rightarrow 0$ снова начинает возрастать в соответствии с ростом плотности состояний на уровне Ферми в каждом из ДЭГ при движении к нему последнего уровня Ландау. Одновременно с ростом пика проводимости появляется и начинает углубляться провал в G(V)при $V \rightarrow 0$, являющийся отражением кулоновской щели в туннельной плотности состояний, сформировавшейся в условиях ультраквантового предела.

Далее произведем сравнение наших экспериментальных данных, касающихся наблюдения кулоновской щели, с данными работ [8,11], в которых кулоновская щель наблюдалась при туннелировании между ДЭГ с высокой подвижностью электронов. Зависимость от В параметра ширины щели Δ , определявшегося по аналогии с [8,11] как разность напряжений V для максимумов зависимости G(V) при $V \rightarrow 0$, оказалась в нашем случае в высокой степени линейной и описывалась выражением $\Delta = 0.3\omega_{c}$. В работах [8,11] эти зависимости также были линейными и описывались выражениями $\Delta = 0.44\omega_c$ и $\Delta = 0.2\omega_c$ соответственно. Отметим, что в случае [8] делалась попытка подгонки экспериментальных данных к выражению $\Delta = 2\pi e^2/\varepsilon l_0$, где $l_0 = (\hbar/eB)^{1/2}$ магнитная длина, полученному в теоретической работе [9]. Однако аппроксимация данных функциями $\Delta = Ae^2/\varepsilon l_0$, где A — коэффициент, привела к результату $\Delta = 0.9e^2/\varepsilon l_0$, отличающемуся на порядок от предсказанного в [9]. Кроме того, следует отметить, что величина $\Delta = 0.3\omega_c$ совпадает с полученной в предыдущем разделе для образцов без *б*-легирования.

Исследование температурной зависимости G при B = 15 Tл в интервале от 2.5 до 15 K (рис. 6) показало, что щель практически полностью подавляется при $T \approx 11$ K. Аналогичный результат, несмотря на разность концентраций электронов в ДЭГ, представлен и в работе [8]. В последнем случае (когда концентрация составляла $1.6 \cdot 10^{11}$ см⁻²) подавление щели в поле

Рис. 6. Зависимости G(V) для образца с δ -слоями, легированными Si, измеренные при B = 15 Tл, в интервале температур от 2 до 15 K (при T = 2.0, 4.2, 5.2, 6.1, 7.2, 8.3, 10.3 и 15 K).

B = 14 Тл происходило при T = 10 К. В работе [11] сообщаются результаты исследования температурной зависимости только при $B \leq 8$ Тл. В случае B = 8 Тл щель подавлялась при $T = 6 \,\mathrm{K}$. На основании сравнения наших данных с результатами [8] полагаем, что концентрация ДЭГ слабо влияет на величину щели (в [11] концентрация составляла 10¹¹ см⁻²). Поскольку существует линейная зависимость Δ от магнитного поля, $\Delta = 0.44\omega_c$, мы можем предполагать, что подавление щели в поле $B \approx 14$ Тл произошло бы в условиях эксперимента [11] при $T \approx 10 \,\mathrm{K}$ и считать их результат совпадающим как с нашим, так и с данными [8]. Достаточную близость значений демонстрируют и параметры щели Δ при одинаковых *B*. Для *B* = 10 Тл, например, нами наблюдалось значение $\Delta \approx 5 \,\mathrm{mB}$, а в работах [11] и [8] $\Delta \approx 7$ мВ и $\Delta \approx 10$ мВ соответственно.

Наши образцы отличались от исследовавшихся в [8,11] существенно меньшей подвижностью электронов. По произведенным оценкам, она не превышала $10^4 \text{ cm}^2/(\text{B} \cdot \text{c})$ при T = 4.2 K, что на порядок величины меньше минимальной подвижности в образцах из работ [8,11]. Поэтому в нашем случае нельзя исключать существенного влияния беспорядка (случайного потенциала) на механизм формирования кулоновской щели. На заметную роль беспорядка в условиях нашего эксперимента указывает также значительно большая (чем в экспериментах [8,11]) ширина наблюдавшегося нами при B = 0 пика проводимости при $V \rightarrow 0$. Теории, учитывающие влияние беспорядка на корреляционное кулоновское взаимодействие электронов, предсказывают различного вида сингулярные туннельные щели на уровне Ферми (см., например, [6,7]). Для выявления роли беспорядка в наших образцах необходимо проведение дополнительных экспериментов при температурах $T < 1 \, \text{K}$, которые могут дать нам возможность корректного количественного сравнения зависимостей G(V) в области щели как с теоретическими предсказаниями, так и с результатами экспериментов [8,11], проводившихся преимущественно при T < 1 K. Независимо от конкретного вида теоретической модели, предсказывающей туннельную щель на уровне Ферми, принципиальной причиной ее возникновения является корреляционное кулоновское взаимодействие с ДЭС. Поэтому, несмотря на невыясненность конкретного механизма формирования кулоновской щели, у нас есть все основания полагать, что в нашем эксперименте впервые зарегистрирована кулоновская щель при туннелировании между параллельными ДЭС с низкой подвижностью электронов — в ультраквантовом пределе по магнитному полю.

4. Заключение

В работе представлены результаты исследования магнитоосцилляций проводимости в параллельном току магнитном поле $(B \parallel I)$ в однобарьерных гетероструктурах GaAs/AlAs/GaAs со спейсерами, обладавших различными толщинами барьеров. Полученные данные позволили показать, что причиной аномалий в дифференциальной проводимости G этих структур при $V \rightarrow 0$ является резонансное туннелирование (РТ) между параллельными ДЭГ в обогащенных слоях, образовавшихся по обе стороны барьера из-за наличия в барьере донорных примесей Si. Представлены результаты исследований транспорта как через гетероструктуры с б-легированием, так и без него в магнитном поле *В* || *I*. Эти данные продемонстрировали в сильных полях, когда в каждом из ДЭГ по обе стороны барьера заполнен только один уровень Ландау, появление аномалии в G(V) в узких интервалах вблизи напряжения $V \rightarrow 0$ (туннельную щель), обусловленное влиянием на процесс туннелирования корреляционного кулоновского взаимодействия электронов в ДЭГ. Обычно полагают, что взаимодействие приводит к образованию кулоновского барьера для туннелирования между параллельными ДЭГ или кулоновской щели на уровне Ферми в электронной плотности состояний. Этот эксперимент впервые обнаружил проявление кулоновской щели при туннелировании между параллельными ДЭГ с относительно низкими подвижностями. В таких структурах влияние беспорядка, т.е. случайных флуктуаций потенциала, на механизм формирования туннельной щели может оказаться заметным. Анализ полученных данных дал дополнительное подтверждение интерпретации нулевой аномалии для образцов без δ-легирования. Кроме того, продемонстрирована аналогичность полученных

нами магнитополевых и температурных зависимостей основного энергетического параметра туннельной щели ("ширины" щели или энергетического зазора) с наблюдавшимися в экспериментах, в которых изучалось туннелирование между параллельными ДЭГ с высокими подвижностями, где влияние беспорядка традиционно полагается пренебрежимо малым.

Авторы благодарны Т.Г. Андерссону и М. Хенини за предоставленные гетероструктуры и проф. Ж.-К. Порталу и Д.К. Моду за плодотворные обсуждения и интерес к работе.

Работа выполнена при частичной финансовой поддержке РФФИ, программы "Физика твердотельных наноструктур" и INTAS (№ 01-2362).

Список литературы

- Е.Л. Вольф. Принципы электронной туннельной спектроскопии (Киев, Наук. думка, 1990).
- [2] J.M. Rowell, L.Y.L. Shen. Phys. Rev. Lett., 17, 15 (1966).
- [3] R.N. Hall, J.H. Racette, H. Ehrereich. Phys. Rev. Lett., 4, 456 (1960).
- [4] R.T. Collins, J. Lambe, T.C. McGrill. R.D. Burnham. Appl. Phys. Lett., 44, 532 (1984).
- [5] K. Hirakava. Phys. Rev. B, 40, 3451 (1989).
- [6] A.L. Efros, B.I. Shklovskii. *Electron–Electron Interactions in Dicordered Systems* (Elsevier, Amsterdam, 1985) p. 109.
- [7] B.L. Altshuler, A.G. Aronov, K.W. Lee. Phys. Rev. Lett., 44, 1288 (1980).
- [8] J.P. Eisenshtein, L.N. Pfeiffer, K.W. West. Phys. Rev. Lett., 69, 3804 (1992).
- [9] Song He, P.M. Platzman, B.I. Halperin. Phys. Rev. Lett., 71, 777 (1993).
- [10] P. Johannson, J.M. Kinaret. Phys. Rev. Lett., 71, 1435 (1993);
 Phys. Rev. B, 50, 4671 (1994).
- [11] N. Turner, J.T. Nicholls, E.H. Linfield, K.M. Brown, G.A. Jones, D.A. Ritchie. Phys. Rev. B, 54, 10614 (1996).
- [12] E. Bockenhoff, K. von-Klitzing, K. Ploog. Phys. Rev. B, 38, 10120 (1988).

Редактор Т.А. Полянская

Zero bias anomalies of the transport characteristics of the single barrier GaAs/AIAs/GaAs heterostructures as the resonant tunneling between parallel two-dimensional electron gases and suppression of resonant tunneling in a magnetic field as a development of a Coulomb gap in the tunnelling density of states

Yu.N. Khanin, Yu.V. Dubrovskii, E.E. Vdovin

Institute of Microelectronics Technologies and High Purity Materials, Russian Academy of Sciences, 142432 Chernogolovka, Russia