Дисперсия времени релаксации квазидвумерных электронов при рассеянии на ионах примеси в сверхрешетке с легированными квантовыми ямами

© С.И. Борисенко¶

Сибирский физико-технический институт им. В.Д. Кузнецова, 634050 Томск, Россия

(Получена 24 июля 2002 г. Принята к печати 16 октября 2002 г.)

Проведен анализ рассеяния на ионах примеси квазидвумерных электронов сверхрешетки GaAs/Al_{0.36}Ga_{0.64}As с легированными квантовыми ямами. Для расчета вероятности рассеяния применялась волновая функция, являющаяся собственной функцией основного состояния нижней минизоны сверхрешетки. Получены формулы и проведен численный анализ дисперсии продольного и поперечного времени релаксации по продольному волновому вектору. Исследована зависимость компонент тензора времени релаксации от периода сверхрешетки и температуры в области T = 77 K.

1. Введение

К настоящему времени имеется ряд работ [1-3], в которых теоретически исследуется проблема рассеяния электронов ионами примеси в структурах с квантовыми ямами (КЯ). В этих работах расчет времени релаксации и подвижности для переноса носителей заряда вдоль квантовых ям проводится в приближении двумерного электронного газа. В случае сверхрешеток (СР) из КЯ, в которых кроме продольного переноса имеется и поперечный перенос по минизоне, работ, связанных с расчетом подвижности носителей заряда за счет примесного рассеяния, практически нет. Данная проблема решается в работе [4], где в рамках уравнения Больцмана получены формулы для времени релаксации и проведен анализ продольной и поперечной подвижности квазидвумерных электронов в СР типа $GaAs/Al_xGa_{1-x}As$. Однако при расчете вероятности рассеяния используется существенное приближение для волновой функции электронов, которая берется в виде суммы Блоха по волновым функциям изолированных бесконечно глубоких КЯ. С учетом этого приближения поперечное и продольное время релаксации зависят только от поперечного волнового вектора или энергии поперечного движения относительно оси симметрии СР и не зависят от продольного волнового вектора.

В данной работе проведен анализ рассеяния квазидвумерных электронов сверхрешетки GaAs/Al_{0.36}Ga_{0.64}As с легированными квантовыми ямами на ионах примеси. Для описания вероятности рассеяния применялась волновая функция, являющаяся собственной функцией основного состояния нижней минизоны СР. Как показал анализ, используемый метод расчета вероятности рассеяния приводит к зависимости времени релаксации электронов от продольного волнового вектора. В работе получены формулы и проведен численный анализ дисперсии продольного и поперечного времени релаксации по продольному волновому вектору, исследована зависимость компонент тензора времени релаксации от периода СР и температуры в области T = 77 К.

2. Основные формулы

ı

Расчет вероятности внутриминизонного рассеяния электронов СР на ионах примеси проводился, как и в работе [5], с приближенной огибающей волновой функцией нижней минизоны

$$\psi_k(\mathbf{r}) = \frac{\exp(i\mathbf{k}\mathbf{r})}{\sqrt{V}} u_0(z), \qquad (1)$$

где $\mathbf{k} = (\mathbf{k}_{\perp}, k_z)$ — волновой вектор электронов в системе координат с осью *z*, параллельной оси СР, $u_0(z)$ периодическая часть огибающей функции Блоха при $k_z = 0$. Для СР с легированными КЯ с учетом (1) вероятность рассеяния электрона с волновым вектором \mathbf{k} в состояние с \mathbf{k}' принимает вид

$$w(\boldsymbol{k}, \boldsymbol{k}') = \frac{2\pi e^4 Z^2 a N_I^{CW}}{\hbar \varepsilon_0^2 \varepsilon^2 V d} \sum_{n,n'=-N_z/2}^{N_z/2} S_n^* S_{n'} W(\boldsymbol{q}_n) W(\boldsymbol{q}_{n'})$$
$$\times \frac{\sin[\pi \frac{a}{d} (n-n')]}{\pi \frac{a}{d} (n-n')} \delta(E(\boldsymbol{k}') - E(\boldsymbol{k})), \qquad (2)$$

где

$$S_{n} = \frac{1}{d} \int_{-d/2}^{d/2} \exp\left(i\frac{2\pi n}{d}z\right) |u_{0}(z)|^{2} dz,$$
$$W(q) = \frac{1}{q^{2} + \alpha^{2}},$$
(3)

$$E(\mathbf{k}) = E = E_{\perp} + \frac{\Delta}{2} \left[1 - \cos(k_z d) \right], \tag{4}$$

$$E_{\perp} = \frac{\hbar^2 k_{\perp}^2}{2m_{\perp}}, \quad \boldsymbol{q}_n = \boldsymbol{k}' - \boldsymbol{k} + \frac{2\pi n}{d} \boldsymbol{e}_z, \quad -\frac{N_z}{2} < n < \frac{N_z}{2},$$

 N_z — число периодов СР, которое считается бесконечно большим, Δ — ширина нижней минизоны, *a* и *d* — ширина КЯ и период СР, e_z — единичный вектор вдоль оси

[¶] E-mail: sib@elefot.tsu.ru

СР, eZ и N_I^{CW} — заряд и концентрация ионов примеси в КЯ, *α* — коэффициент экранирования, *ε* — статическая диэлектрическая проницаемость. Формула (2) получена в приближении случайных фаз, для однородного распределения примеси по КЯ, в приближении однородной по СР диэлектрической проницаемости и слабой зависимости функции $u_{k_z}(z)$ от k_z .

Неравновесная добавка к функции распределения электронов рассчитывалась в виде

$$g(\mathbf{k}) = e \, \frac{\partial f_0}{\partial E} \sum_i \tau_i(\mathbf{k}) E_i v_i(\mathbf{k}), \tag{5}$$

где E_i — компоненты напряженности электрического поля, $\boldsymbol{v}(\boldsymbol{k}) = \nabla_{\boldsymbol{k}} E/\hbar$ — скорость электрона, $f_0(E)$ равновесная функция Ферми–Дирака. Функции $\tau_i(k)$ представляют собой компоненты тензора времени релаксации, зависящие от компонент волнового вектора. Для расчета этих функций с помощью линеаризованного уравнения Больцмана были получены интегральные уравнения

$$\tau_{\perp}(\boldsymbol{k}) = \tau_0(\mathbf{k}) \left\{ \sum_{\boldsymbol{k}'} \boldsymbol{w}(\boldsymbol{k}, \boldsymbol{k}') \tau_{\perp}(\boldsymbol{k}') \frac{\boldsymbol{k}_{\perp} \boldsymbol{k}_{\perp}'}{k_{\perp}^2} + 1 \right\}, \quad (6)$$

$$\tau_{\parallel}(\boldsymbol{k}) = \tau_0(\boldsymbol{k}) \left\{ \sum_{\boldsymbol{k}'} \boldsymbol{w}(\boldsymbol{k}, \boldsymbol{k}') \tau_{\parallel}(\boldsymbol{k}') \frac{\sin(k_z'd)}{\sin(k_zd)} + 1 \right\}, \quad (7)$$

где

$$\tau_0^{-1}(k) = \sum_{k'} w(k, k')$$
(8)

- полная вероятность рассеяния электрона из состояния с волновым вектором k за единицу времени. В приближении квазидвумерного электронного газа ($\Delta = 0$ при $\Delta \ll k_0 T$), с учетом формулы для вероятности рассеяния (2), в которой учитывается лишь основной член суммы с n = n' = 0, уравнения (4), (5) принимают вид

$$\begin{aligned} \frac{\tau_{\perp}(E_{\perp},\vartheta)}{\tau_0(E_{\perp},\vartheta)} &= C_I \\ \times \int_{-\pi}^{+\pi} \frac{2E_{\perp}\tau_{\perp}(E_{\perp},\vartheta')\,d\vartheta'}{[t^2(\vartheta'-\vartheta)^2+\gamma^2]^{3/2}[4E_{\perp}+t^2(\vartheta'-\vartheta)^2+\gamma^2]^{3/2}} + 1, \end{aligned}$$
(9)

$$\begin{aligned} \frac{\chi_{\parallel}(E_{\perp},\vartheta)}{\tau_{0}(E_{\perp},\vartheta)} &= C_{I} \\ \times \int_{-\pi}^{+\pi} \frac{[2E_{\perp} + t^{2}(\vartheta' - \vartheta)^{2} + \gamma^{2}]\chi_{\parallel}(E_{\perp},\vartheta')\,d\vartheta'}{[t^{2}(\vartheta' - \vartheta)^{2} + \gamma^{2}]^{3/2}[4E_{\perp} + t^{2}(\vartheta' - \vartheta)^{2} + \gamma^{2}]^{3/2}} \\ &+ \sin(\vartheta), \end{aligned}$$
(10)

Физика и техника полупроводников, 2003, том 37, вып. 5

где

$$\frac{1}{\tau_{0}(E_{\perp},\vartheta)} = C_{I}$$

$$\times \int_{-\pi}^{+\pi} \frac{[2E_{\perp} + t^{2}(\vartheta' - \vartheta)^{2} + \gamma^{2}] d\vartheta'}{[t^{2}(\vartheta' - \vartheta)^{2} + \gamma^{2}]^{3/2} [4E_{\perp} + t^{2}(\vartheta' - \vartheta)^{2} + \gamma^{2}]^{3/2}},$$
(11)
$$\chi_{\parallel}(E_{\perp},\vartheta) = \tau_{\parallel}(E_{\perp},\vartheta) \sin(\vartheta),$$
(12)

$$\chi_{\parallel}(E_{\perp},\vartheta) = \tau_{\parallel}(E_{\perp},\vartheta)\sin(\vartheta), \qquad (12)$$

$$C_{I} = 2\left(\frac{e^{2}Z}{4\pi\varepsilon_{0}\varepsilon}\right)^{2}\frac{\hbar a N_{I}^{CW}}{m_{\perp}d^{2}},$$
$$t^{2} = \frac{\hbar^{2}}{2m_{\perp}d^{2}}, \quad \gamma^{2} = \frac{\hbar^{2}\alpha^{2}}{2m_{\perp}}, \quad \vartheta = k_{z}d.$$

Следует отметить, что в отличие от рассеяния на акустических колебаниях [5] единственным параметром, характеризующим СР, в формулах (9)-(11) является период СР *d*. Влияние на примесное рассеяние других параметров, таких как ширина квантовой ямы, толщина и высота барьера в случае однородного распределения примеси невелико. Причина этого связана с незначительным вкладом в сумму (2) членов с $n, n' \neq 0$ по сравнению с нулевым членом из-за особенности фурьекомпоненты экранированного кулоновского потенциала в области малых значений продольного волнового вектора.

Расчет подвижности электронов проводился по формулам

$$\mu_{xx} = \mu_{yy} = \mu_{\perp} = e \langle \tau_{\perp} \rangle / m_{\perp},$$

$$\mu_{zz} = \mu_{\parallel} = e \langle \tau_{\parallel} \rangle / \langle m_{\parallel} \rangle, \qquad (13)$$

где

<

$$\langle \tau_{\perp} \rangle = \int_{0}^{\infty} [-f_{0}'(E_{\perp})] \tau_{\perp}(E_{\perp}) E_{\perp} dE_{\perp} / \int_{0}^{\infty} f_{0}(E_{\perp}) dE_{\perp},$$
(14)

$$\tau_{\parallel}\rangle = \int_{0}^{\infty} [-f_{0}'(E_{\perp})]\tau_{\parallel}(E_{\perp}) d\varepsilon_{\perp} / \int_{0}^{\infty} [-f_{0}'(E_{\perp})] dE_{\perp},$$
(15)

$$au_{\perp}(E_{\perp}) = rac{1}{\pi} \int\limits_{0}^{\pi} au_{\perp}(E_{\perp},artheta) \, dartheta,$$

$$\tau_{\parallel}(E_{\perp}) = \frac{2}{\pi} \int_{0}^{\pi} \tau_{\parallel}(E_{\perp}, \vartheta) \sin^{2}(\vartheta) \, d\vartheta, \qquad (16)$$

$$\frac{1}{\langle m_{\parallel} \rangle} = \frac{1}{2} \left(\frac{\Delta d}{2\hbar} \right)^2 \int_0^\infty [-f_0'(E_{\perp})] dE_{\perp} / \int_0^\infty f_0(E_{\perp}) dE_{\perp}$$
(17)

— усредненное по энергии значение продольной эффективной массы электронов.

3. Численный анализ

Расчет времени релаксации и подвижности электронов за счет рассеяния на ионах примеси проводился для композиционной сверхрешетки GaAs/Al_{0.36}Ga_{0.64}As с легированными квантовыми ямами. В расчете для GaAs и сплава Al_xGa_{1-x}As были использованы следующие значения параметров [6]: $m_{\perp} = m^* = 0.066m_0$, $\varepsilon = 13.18$. Решение нелинейных интегральных уравнений (9), (10) проводилось численно разностным методом [7].

Зависимость времени релаксации от энергии поперечного движения и продольного волнового вектора рассчитывалась для CP с параметрами a = 5 нм, b = 8 нм, $\Delta = 0.10$ мэВ, где *b* ширина потенциального барьера. Расчет ширины минизоны проводился методом, изложенным в работе [8]. Расчет времени релаксации проводился при условии $aN_I^{CW} = nd$ для невырожденного электронного газа с концентрацией электронов $n = 10^{16} \text{ см}^{-3}$ при T = 77 K. При этих значениях параметров для усредненных по энергии времен релаксации, рассчитанных по формулам (14), (15), были получены следующие значения: $\langle \tau_{\perp} \rangle = 2.1 \, \text{nc},$ $\langle \tau_{\parallel} \rangle = 1.1$ nc. Эти значения близки по величине к $\langle \tau \rangle = 1.6 \,\mathrm{nc}$ — времени релаксации для однородно легированного GaAs, рассчитанного с теми же параметрами при помощи формулы Брукса-Херринга, и к значению $\langle \tau_{\perp} \rangle = \langle \tau_{\parallel} \rangle = 1.8 \, \mathrm{nc}$ — времени релаксации электронов в рассматриваемой СР на акустических колебаниях [5]. Значения подвижности, рассчитанные по формулам (13), при $\langle m_{\parallel} \rangle = 25m_0$ получились равными $\mu_{\perp} = 5.6\,{
m m}^2/({
m B}\cdot{
m c})$ и $\mu_{\parallel} = 7.9\cdot 10^{-3}\,{
m m}^2/({
m B}\cdot{
m c})$ по сравнению с подвижностью $\mu = 4.3 \,\mathrm{m^2/(B \cdot c)}$ в GaAs.

На рис. 1 представлена зависимость поперечного (кривая *I*) и продольного (кривая *2*) времени релаксации от величины $\vartheta = k_z d$ при энергии поперечного движения $E_{\perp} = k_0 T$. Из рисунка следует, что с ростом продольного волнового вектора от нуля до максимального значения τ_{\perp} и τ_{\parallel} увеличиваются. Однако если рост по-

Рис. 1. Дисперсия по продольному волновому вектору поперечного и продольного времени релаксации при T = 77 Kдля энергии поперечного движения $E_{\perp} = k_0 T$: $I - \tau_{\perp}(E_{\perp}, \vartheta)$, $2 - \tau_{\parallel}(E_{\perp}, \vartheta)$.

Рис. 2. Дисперсия по энергии поперечного движения усредненного по продольному волновому вектору поперечного и продольного времени релаксации: $I - \tau_{\perp}(E_{\perp}), 2 - \tau_{\parallel}(E_{\perp}),$ $I' - \tau_{\perp}(E_{\perp})^*, 2' - \tau_{\parallel}(E_{\perp})^*, 3 - \tau(E)$ -GaAs. * — расчет проведен с приближенной волновой функцией [4].

перечного времени релаксации невелик, то продольное время релаксации при стремлении k_z к π/d стремится к бесконечности.

Зависимости усредненного по продольному волновому вектору поперечного (кривая 1) и продольного (кривая 2) времени релаксации от энергии поперечного движения, рассчитанные по формулам (16), приведены на рис. 2. Характер этих зависимостей близок к степенному, причем показатель степенной зависимости для $au_{\perp}(E_{\perp})$ больше, а для $au_{\parallel}(E_{\perp})$ меньше единицы. Из рисунка следует, что поперечное время релаксации при всех значениях E_{\perp} больше, чем в объемном GaAs (кривая 3), тогда как для продольного это имеет место при $E_{\perp} < 3k_0 T$. Приближенный расчет с волновой функцией в виде суммы Блоха по функциям бесконечно глубоких изолированных квантовых ям [4] приводит к более низким значениям $\tau_{\perp}(E_{\perp})$ (кривая l') и $\tau_{\parallel}(E_{\perp})$ (кривая 2'). Для продольного времени релаксации в отличие от поперечного эта разница оказывается существенной, за счет чего анизотропия усредненного по энергии времени релаксации $\langle \tau_{\perp} \rangle / \langle \tau_{\parallel} \rangle = 1.9$ по сравнению с приближенным расчетом $\tau_{\perp}/\tau_{\parallel} = 3.4$ уменьшается.

Различная зависимость $\tau_{\perp}(E_{\perp})$ и $\tau_{\parallel}(E_{\perp})$ от энергии поперечного движения приводит к различной температурной зависимости средних по энергии времен релаксации и подвижностей (см. рис. 3). Согласно рисунку, слабое увеличение $\langle \tau_{\parallel} \rangle$ с ростом температуры (кривая 2') по сравнению с зависимостью $\langle \tau_{\perp} \rangle$ (кривая 1') приводит к тому, что продольная подвижность μ_{\parallel} (кривая 2) с ростом температуры убывает, тогда как поперечная подвижность μ_{\perp} (кривая 1), как и в объемном GaAs растет.

Зависимости усредненных по энергии компонент тензора времени релаксации $\langle \tau_{\perp} \rangle$ и $\langle \tau_{\parallel} \rangle$ от периода СР при постоянном значении концентрации электронов

Рис. 3. Зависимость от температуры усредненных по энергии компонент тензора времени релаксации и подвижности: $I - \mu_{\perp}, 2 - \mu_{\parallel}, I' - \langle \tau_{\perp} \rangle, 2' - \langle \tau_{\parallel} \rangle.$

Рис. 4. Зависимости усредненных по энергии компонент тензора времени релаксации от периода СР при постоянном значении концентрации электронов: $1 - \langle \tau_{\perp} \rangle$, $2 - \langle \tau_{\parallel} \rangle$, $3 - \langle \tau_{\perp} \rangle / \langle \tau_{\parallel} \rangle$.

 $n = 10^{16} \,\mathrm{cm^{-3}}$ представлены на рис. 4. Из рисунка следует, что с увеличением периода СР среднее значение поперечного времени релаксации (кривая 1) растет, тогда как продольное время релаксации (кривая 2) уменьшается. Различный характер изменения рассматриваеммых величин с ростом периода СР в 2 раза приводит к увеличению параметра анизотропии времени релаксации (τ_{\perp} /(τ_{\parallel}) (кривая 3) примерно в 4 раза.

4. Заключение

Численный анализ рассеяния электронов СР с легированными квантовыми ямами на ионах примеси с помощью волновой функции (1) показал: 1) наличие существенной зависимости продольного времени релаксации от продольного волнового вектора; 2) наличие различной зависимости продольного и поперечного времени релаксации от энергии поперечного движения, приводящее к различной температурной зависимости продольной и поперечной подвижности; 3) рост анизотропии времени релаксации с ростом периода СР.

Следует отметить, что численные результаты проведенного анализа получены в приближении квазидвумерного характера электронного газа. Это накладывает существенные ограничения на величину и соотношение параметров СР, таких как ширина КЯ, толщина и высота потенциального барьера, при которых должно выполняться условие $\Delta \ll k_0 T$. В связи с этим актуальной является задача, связанная с учетом энергии продольного движения в законе сохранения полной энергии при рассеянии электронов на ионах примеси в тех СР, в которых условие квазидвумерности электронного газа не выполняется.

Список литературы

- [1] J. Lee, H.N. Spector, V.K. Arora. J. Appl. Phys., **54**, 6995 (1983).
- [2] A. Gold. Phys. Rev. B, 35, 723 (1987).
- [3] J.L. Thobel, L. Baudry. J. Appl. Phys., 73, 233 (1993).
- [4] С.И. Борисенко. ФТП, **36**, 861 (2002).
- [5] С.И. Борисенко. ФТП, 36, 1237 (2002).
- [6] Landolt-Börnstein. Numerical Date and Functional Relationships in Science and Technology, ed by O. Madelung (Springer Verlag, Berlin, 1987) New Series III, 22 a, p. 451.
- [7] Н.Н. Калиткин. *Численные методы* (М., Наука, 1978) гл. 14, с. 455.
- [8] С.И. Борисенко. Г.Ф. Караваев. ФТП, 32, 607 (1998).

Редактор Л.В. Беляков

Dispersion of relaxation time of quasi-2*D* electrons at scattering on ions of an impurity in a superlattice with doped quantum wells

S.I. Borisenko

Siberian Physical and Technical Institute, 634050 Tomsk, Russia

Abstract The analysis of scattering on ions of an impurity of quasi-2D electrons of a superlattice GaAs/Al_{0.36}Ga_{0.64}As with doped quantum wells is carried out. The eigen wave function of the basic state of the bottom minizone of a superlattice was applied to the calculation of scattering probability. The formulas are received and the numerical analysis of dispersion of longitudinal and transverse relaxation time on a longitudinal wave vector is carried out. The dependence of components of relaxation time tensor from the period superlattice and temperature in area T = 77 K is investigated.