Влияние примеси гадолиния на прозрачность и отражательную способность кристаллов Hg₃In₂Te₆

© П.М. Горлей, О.Г. Грушка, З.М. Грушка

Черновицкий национальный университет им. Ю. Федьковича, 58012 Черновцы, Украина

(Получена 4 июня 2002 г. Принята к печати 17 июня 2002 г.)

Представлены результаты измерений спектров пропускания и отражения света в области прозрачности полупроводниковых кристаллов $Hg_3In_2Te_6\langle Gd \rangle$. Показано, что во всем исследованном диапазоне длин волн 2–25 мкм легирование приводит к увеличению сплошного бесструктурного поглощения на примесях и дефектах, создающих в запрещенной зоне квазинепрерывный спектр локализованных состояний. Уменьшение прозрачности сопровождается понижением коэффициента отражения, не зависящего от длины волны. Изменение показателя преломления объясняется изменением характера связи и величины электронной поляризации кристаллов $Hg_3In_2Te_6\langle Gd \rangle$. Установлена линейная зависимость изменения поляризационных констант от напряженности внутренних полей, существующих вблизи примесных дефектов.

В электронных и оптоэлектронных приборах, работающих в экстремальных условиях и режимах, все большее применение находят неупорядоченные материалы: аморфные и дефектные полупроводники [1,2]. К последним относятся материалы, подобные соединению Hg₃In₂Te₆ [3], в котором кристаллическая структура типа сфалерита (катионная подрешетка) имеет большую концентрацию ($\gtrsim 10^{21} \, {\rm cm}^{-3}$) стехиометрических вакансий. Общими свойствами таких полупроводников являются высокая стойкость к ионизирующим излучениям, слабая зависимость электрических параметров от введенных примесей и закрепление уровня Ферми вблизи середины запрещенной зоны благодаря эффекту самокомпенсации. Представляет интерес изучение роли структурного разупорядочения в эффекте компенсации примеси без специально введенных центров противоположного зарядового состояния.

Для исследованний использовались кристаллы $Hg_3In_2Te_6$, выращенные по методу Бриджмена, с различным содержанием примеси гадолиния. Концентрация примеси гадолиния N_{Gd} в образцах (см. табл. 1) оценивалась по результатам измерения статической магнитной восприимчивости [4].

Рентгенографические исследования показали, что легирование гадолинием не изменяет тип структуры (симметрия T_d), однако параметр решетки a, определенный по рефлексу (642) рентгенодифрактограмм (Си K_a -излучение), заметно увеличивается с ростом содержания примеси (см. табл. 1). Увеличение параметра решетки связано с уменьшением плотности материала, а наблюдаемое некоторое уширение рефлексов происходит в связи с усилением напряженного состояния решетки и возникновением случайных полей.

По данным измерений электропроводности, коэффициент Холла и термоэдс кристаллов $Hg_3In_2Te_6\langle Gd\rangle$, обладающих биполярной проводимостью подобно собственному полупроводнику, были рассчитаны эффективные массы электронов m^*/m_0 (см. табл. 2) для случая сферических изоэнергетических поверхностей и

рассеяния носителей заряда на акустических колебаниях решетки. Электрические измерения показали, что примесные состояния не участвуют в проводимости на постоянном токе, а уровень Ферми, расположенный вблизи середины запрещенной зоны в верхней ее половине, несколько опускается при увеличении концентрации примеси.

Из исследований спектра коэффициента поглощения α в области края собственного поглощения выявлено, что зависимость α от энергии фотонов hv для всех образцов описывается правилом Урбаха $\alpha \propto \exp(hv/E_0)$. Наклон линейного участка зависимости $\ln \alpha = f(hv)$ уменьшается, а параметр E_0 растет по мере увеличения содержания примеси в образцах. Наиболее вероятной причиной такой частотной зависимости коэффициента поглощения могут быть флуктуации потенциала, обусловленные структурным беспорядком, который приводит к росту E_0 [2]. Флуктуации вызывают образование у краев зоны проводимости и валентной зоны хвостов локализованных состояний, проникающих глубоко в запрещенную зону.

Чтобы получить информацию о состояниях в запрещенной зоне, были измерены спектры оптического пропускания T и отражения R в области прозрачности в диапазоне длин волн $\lambda = 2.0-25$ мкм, т.е. в области энергий фотонов $h\nu < E_g \ (E_g = 0.74 \, \text{эB} - \text{ширина пря-}$ мой запрещенной зоны Hg₃In₂Te₆ при 300 K). Как видно из рисунка, для области длин волн 2.0 < λ < 25 мкм в легированных образцах (образцы 2-5) по сравнению с нелегированным (образец 1) характер спектров сохраняется: коэффициент пропускания $T(\lambda)$ с ростом длины волны λ от 2.0 до 20 мкм слабо увеличивается при постоянном значении $R(\lambda)$. Различие состоит только в величинах измеренных параметров, которые уменьшаются с ростом уровня легирования, т.е. прозрачность и отражательная способность уменьшаются по сравнению с наблюдаемыми в чистом материале сразу же за краем собственного поглощения.

Таблица 1. Технологические параметры образцов $Hg_3In_2Te_6$ и их оптические характеристики в диапазоне длин волн $\lambda = 2-20$ мкм в зависимости от содержания примеси гадолиния

Образец	$N_{\rm Gd},\ 10^{19}{ m cm}^{-3}$	a,Å	<i>d</i> , см	Т	R	$lpha, \mathrm{cm}^{-1}$	k
1	0	6.2846	0.20	0.56-0.57	0.27	0.11-0.04	$1.8\cdot 10^{-6}{-}5.8\cdot 10^{-6}$
2	0.5	6.2857	0.19	0.50-0.52	0.24	0.97-0.78	$1.6\cdot 10^{-5} - 1.3\cdot 10^{-4}$
3	1.3	6.2879	0.18	0.40-0.43	0.20	2.70-2.30	$4.3\cdot 10^{-5} {-} 3.7\cdot 10^{-4}$
4	1.6	6.2900	0.20	0.24-0.28	0.17	5.29-4.53	$8.4\cdot 10^{-5} - 7.2\cdot 10^{-4}$
5	2.3	6.2915	0.19	0.15-0.20	0.15	8.28-6.77	$1.3 \cdot 10^{-4} - 1.1 \cdot 10^{-3}$

Примечание. а — постоянная решетки, d — толщина оразца, T — пропускание, R — отражение, а — коэффициент поглощения, k — коэффициент экстинкции.

Таблица 2. Параметры образцов Hg₃In₂Te₆, характеризующие электронную поляризуемость

Образец	m^*/m_0	п	Е	$a_B, Å$	E_B , эВ	E_i , к B /см	a_p	Δa_p	$\Delta a_p/E_i, \ 10^{-4}$ см/кВ
1	0.80	3.17	10.0	6.62	0.11	_	0.10	_	_
2	0.86	2.92	8.5	5.26	0.16	39.8	0.12	0.02	5.0
3	1.06	2.62	6.8	3.39	0.31	96.3	0.15	0.05	5.1
4	1.18	2.40	5.8	2.60	0.48	136.7	0.17	0.07	5.1
5	1.39	2.26	5.1	1.94	0.73	204.4	0.20	0.10	4.9

Примечание. m^*/m_0 — эффективная масса электронов; ε — диэлектрическая проницаемость; n — показатель преломления; a_B — боровский радиус; E_B — боровская энергия; E_i — внутреннее электрическое поле; a_P , Δa_P — поляризационная константа и ее изменение.

Дополнительное поглощение, коррелирующее с концентрацией примеси $N_{\rm Gd}$ в образцах, имеющих электропроводность ~ 10^{-4} Oм⁻¹ · см⁻¹ и концентрацию носителей заряда ~ 10^{13} см⁻³ при 300 K, не связано с поглощением на свободных носителях. Причиной уменьшения прозрачности является поглощение на примесях и дефектах. Коэффициент поглощения α и коэффициент экстинкции k вычисляли соответственно по формулам [5]

$$T = \frac{(1-R)^2 e^{-\alpha d}}{1-R^2 e^{-2\alpha d}}, \quad k = \frac{\alpha \lambda}{4\pi},$$

где *d* — толщина образцов, приведенная в табл. 1.

Как видно из табл. 1, даже в случае максимальных концентраций примеси коэффициент экстинкции k остается очень малой величиной по сравнению с показателем преломления n в формуле [5] $R = [(n-1)^2 + k^2]/[(n+1)^2 + k^2]$, что дает возможность пренебречь величиной k и рассчитать для исследованных образцов показатель преломления, используя выражение $n = (1 + \sqrt{R})/(1 - \sqrt{R})$, и соответственно диэлектрическую проницаемость $\varepsilon = n^2$.

Полученные значения ε (см. табл. 2) представляют собой оптические диэлектрические проницаемости ε_{opt} , которые зависят от электронной поляризации, вызванной смещением электронных облаков. Эти значения существенно меньше статической диэлектрической проницаемости ($\varepsilon_{st} \approx 18.5$), которая отличается от ε дополнительным компонентом, определяемым относительным смещением ионов трехэлементного полупроводника (ионной поляризацией) во внешнем электрическом поле. Наблюдается корреляция между уменьшением

диэлектрической проницаемости и снижением плотности материала при легировании, однако поведение є объяснить только изменением плотности на основании формулы Клаузиуса–Мосотти [6] не представляется возможным.

Как принято [6], изменения показателей преломления выражали через поляризационные константы, которые в случае изотропной среды, обладающей только электронной поляризацией, записываются в виде $a_p = 1/n^2 = 1/\varepsilon$. Для кристаллов (в том числе симметрии T_d), не имеющих центра инверсии, известно явление приращения поляризационных констант под

Спектры пропускания (a) и отражения (b) для образцов Hg₃In₂Te₆, не легированного (1) и легированных гадолинием (2-5). Номера кривых соответствуют номерам образцов. Значения $N_{\rm Gd}$ указаны в табл 1.

действием внешнего электрического поля — так называемый электрооптический эффект. В исследуемом случае внешнее поле отсутствует, однако наблюдаемое приращение Δa_p (см. табл. 2), вероятнее всего, происходит изза формирования внутреннего электрического поля благодаря дополнительным дефектам и локальным напряжениям примесной природы. Для оценки напряженности характерного внутреннего поля было использовано выражение [7] $E_i = (n_t a_B^3)^{3/5} E_B / e a_B$, где $a_B = \varepsilon \hbar^2 / m^* e^2$ боровский радиус, $E_B = m^* e^4 / 2 \varepsilon^2 \hbar^2$ — боровская энергия. Как видно из табл. 2, с ростом содержания примеси в образцах значение Е_i увеличивается. С учетом ошибки эксперимента зависимость $\Delta a_p = f(E_i)$ может быть описана уравнением линейного электрического эффекта $\Delta a_p = rE_i$, где, согласно табл. 2, $r = \Delta a_p / E_i \approx 5 \cdot 10^{-4}$ см/кВ. Таким образом, сильные поля, которые существуют вблизи примесных дефектов, оказывают влияние на показатели преломления и величину є кристаллов Hg₃In₂Te₆.

Изменение величины а в и Ев в зависимости от уровня легирования (см. табл. 2) свидетельствует о том, что с уменьшением боровского радиуса ав электроны локализуются сильнее, их боровская энергия E_B растет с увеличением энергии связи электронов с примесными атомами, и соответственно повышается ионизационный потенциал. От последнего зависит величина электронной поляризуемости. Чем выше ионизационный потенциал, тем меньше поляризуемость [6]. Этот факт согласуетсся с особенностью неупорядоченных систем, в которых за счет искажения исходной матрицы становится выгодной тенденция к спариванию электронов в связывающих конфигурациях [1]. При этом флуктуации длин и углов связей вследствие деформации решетки приводят к размытию зон и возникновению локализованных состояний, квазинепрерывно распределенных в запрещенной зоне. Этим состояниям, которые образуются у обеих зон свободных носителей, соответствуют уровни донорного и акцепторного типа. Взаимное перекрытие таких уровней обеспечивает самокомпенсацию вводимых примесей и фиксирует положение уровня Ферми вблизи середины запрещенной зоны.

Список литературы

- [1] А. Меден, А. Шо. Физика и применение аморфных полупроводников (М., Мир, 1991).
- [2] Аморфный кремний и родственные материалы, под ред. Х. Фрицше (М., Мир, 1991).
- [3] G.G. Grushka, A.P. Bakhtinov, Z.M. Grushka. J. Adv. Mater., 4 (1), 36 (1997).
- [4] О.Г. Грушка, П.М. Горлей, А.В. Бесценный, З.М. Грушка. ФГП, 34 (10), 1197 (2000).
- [5] Ю.И. Уханов. Оптические свойства полупроводников (М., Наука, 1977).
- [6] И.С. Желудев. Физика кристаллических диэлектриков (М., Наука, 1968).

[7] В.Л. Бонч-Бруевич, И.П. Звягин, Р. Кайпер, А.Г. Миронов, Р. Эндерлайн, Б. Эссер. Электронная теория неупорядоченных полупроводников (М., Наука, 1981).

Редактор Л.В. Шаронова

The effect of gadolinium impurity on the transparency of a Hg₃In₂Te₆ crystal

P.M. Gorley, D.G. Grushka, Z.M. Grushka

Chernovtsi National University, 58012 Chernovtsi, Ukraine