Влияние заряженных дефектов на обнаружение электронного парамагнитного резонанса в стеклообразных халькогенидных полупроводниках

© Л.П. Гинзбург

Московский технический университет связи и информатики, 111024 Москва, Россия

(Получена 12 марта 2002 г. Принята к печати 10 июня 2002 г.)

На основе рассмотрения электронных процессов, сопровождающих фотовозбуждение зона-зона, установлена связь между концентрацией наведенных спинов и концентрацией врожденных U⁻-центров.

1. Введение

Уже более тридцати лет халькогенидные стеклообразные полупроводники (ХСП) типа a-Se, a-As₂Se₃, *a*-As₂S₃, *a*-GeSe₂ и др. привлекают особое внимание исследователей. Последнее неудивительно, так как ХСП обладают рядом таких непривычных и противоречивых свойств, которые трудно объяснить с единых позиций. Особенно это относится к эффектам, сопровождающим фотовоздействие. Мы не станем анализировать весь спектр проблем, так как разные его аспекты изложены во многих обзорах (см., например, [1,2] и ссылки там). Мы сразу выделим ту область, которая является предметом изучения данной работы. Нас будут интересовать явления, связанные с фотовоздействием невысокой интенсивности (~1 мВт/см²) и ограниченной длительности (≤ 10 мин), т.е. те эффекты, которые принято связывать с врожденными (native) дефектами. Последние представляют собой заряженные центры с отрицательной эффективной корреляционной энергией (U⁻-центры) [3–5]. В дальнейшем мы для этих центров будем использовать известные обозначения: C_n^{α} (в случае S, Se), P_n^{α} (в случае As) и T_n^{α} (в случае Ge), где символ $\alpha = 0, +, -$ означает зарядовое состояние, а символ $n = 1, 2, 3, \ldots$ — координацию.

В указанных выше условиях основные эффекты, возбуждаемые переходом типа зона-зона (или близкими к нему), — следующие [6-8]:

1) фотолюминесценция (ФЛ), характеризуемая большим стоксовым сдвигом ($\sim E_g/2$, где E_g — ширина запрещенной зоны);

2) усталость ФЛ с характерным временем установления $\lesssim 10$ мин;

3) сигнал электронного парамагнитного резонанса (ЭПР), который в отсутствие облучения не наблюдается;

4) внутрищелевое поглощение, которое появляется вместе с сигналом ЭПР.

Сравнение кинетики установления стационарных режимов указанных выше эффектов с очевидностью указывает на то, что во всех случаях задействованы одни и те же дефекты. При этом в экспериментах по ЭПР получены следующие значения концентрации спинов [6,7]:

$$N_s(a-{
m Se}) \approx 10^{16} \,{
m cm}^{-3},$$

 $N_s(a-{
m As}_2{
m Se}_3) \approx N_s(a-{
m As}_2{
m S}_3) \approx 10^{17} \,{
m cm}^{-3},$
 $N_s(a-{
m GeSe}_2) \approx 5 \cdot 10^{15} \,{
m cm}^{-3}.$ (1)

Приведенные оценки N_s в случаях a-As₂S₃, a-As₂Se₃ хорошо коррелируют с концентрацией дефектов, которая следует из данных по ФЛ: $10^{17}-10^{18}$ см⁻³ [8]. Поэтому часто предполагается, что $N_s \approx N_v$, где N_v — концентрация врожденных U^- -центров.

Однако здесь имеется противоречие. Во-первых, данные по ФЛ весьма ориентировочны, так как получены без точных сведений о квантовой эффективности [8]. Во-вторых, почти одновременно с опубликованием данных по ФЛ в работах [3,4] была предложена оценка: $N_v \approx 10^{18} - 10^{19} \,\mathrm{cm}^{-3}$, которая отличается от (1).

Возможно, последнее связано со следующим обстоятельством. Имеются определенные основания полагать, что не только в *a*-Se, но и в *a*-As₂S₃, *a*-As₂Se₃ U^- -центрами являются дефекты C₃⁺ и C₁⁻ [9]. В этих условиях концентрацию можно оценивать по формуле

$$N_v = N_0 \exp\left(-U_c/2k_0 T_g\right),\tag{2}$$

где N_0 — концентрация атомов халькогена, T_g — температура стеклования, U_c — эффективная энергия кулоновского отталкивания, связанная с добавлением лишнего электрона на несвязывающем уровне, k_0 — постоянная Больцмана. Величина U_c неизвестна, и в литературе присутствует широкий спектр оценок: от 0.2-0.4 эВ [2] до 0.5-1.0 эВ [5]. Если остановить выбор на промежуточном значении, скажем, 0.5 зВ, то, используя известные данные по N_0 и T_g , из (2) получим

$$\begin{split} N_v(a\text{-Se}) &= 2.6 \cdot 10^{18} \, \text{cm}^{-3}, \\ N_v(a\text{-As}_2\text{Se}_3) &= 4.2 \cdot 10^{19} \, \text{cm}^{-3}, \\ N_v(a\text{-As}_2\text{S}_3) &= 5.5 \cdot 10^{19} \, \text{cm}^{-3}, \\ N_v(a\text{-GeSe}_2) &= 5.9 \cdot 10^{20} \, \text{cm}^{-3}. \end{split}$$

Из приведенных значений следует, что, немного повысив значение U_c , можно добиться согласия с данными [3,4],

но никак не с данными (1). Наконец, обратим внимание на то, что согласно данным по проводимости на переменном токе в *a*-As₂S₃ [10] в отсутствие облучения концентрация случайно распределенных заряженных центров должна составлять ~ $2.0 \cdot 10^{18}$ см⁻³. Последнее значение также согласуется с [3,4] и заметно превышает данные [6,7] (1).

С целью внесения большей ясности в вопрос о концентрации U^- -центров нами был использован альтернативный способ оценки N_v . Способ основан на том, что низкочастотный хвост спектра ФЛ формируется за счет абсолютно жесткой кулоновской щели (АЖКЩ), которую образуют заряженные центры [11,12]. В этом случае величину N_v можно оценить с помощью соотношения [13]

$$N_v \approx \left[\frac{\varkappa (\hbar \omega_m - \hbar \omega_0)}{1.36e_0^2}\right]^3,\tag{3}$$

где \varkappa — диэлектрическая проницаемость, e_0 — заряд электрона, а разность энергий фотонов ($\hbar\omega_m - \hbar\omega_0$) ширина щели. Надежность (3) зависит от двух факторов. Во-первых, требуется достаточно аккуратное измерение указанного "хвоста" для определения энергии фотона $\hbar\omega_0$, соответствующей началу спектра ФЛ — росту интенсивности от нуля. Кроме того, должны выполняться условия, подтверждающие наличие АЖКЩ [11,12]. При их соблюдении за величину $\hbar\omega_m$ можно принять точку $\hbar\omega$, в которой функция

$$\eta(\hbar\omega) = \frac{d\left(I/\hbar\omega\right)^2}{d(\hbar\omega)}$$

(I -интенсивность излучения) перестает быть линейной [11]. В силу указанных обстоятельств нами для применения (3) были выбраны работы [14,15], где для случаев *a*-As₂S₃ и *a*-As₂Se₃ точка $\hbar\omega_0$ указана. Тщательный анализ данных [14,15] с применением метода наименьших квадратов подтвердил, что все признаки АЖКЩ присутствуют. При этом при значениях диэлектрической проницаемости χ (*a*-As₂Se₃) = 7.6 [16], χ (*a*-As₂S₃) = 6.4 [17] из (3) следует:

$$N_v(a-\text{As}_2\text{Se}_3) \approx 2.4 \cdot 10^{18} \text{ cm}^{-3},$$

 $N_v(a-\text{As}_2\text{S}_3) \approx 2.5 \cdot 10^{18} \text{ cm}^{-3}.$ (4)

Приведенные значения хорошо согласуются с [3,4,10]. К сожалению, нам не удалось обнаружить экспериментальных данных, которые позволили бы использовать (3) в случае *a*-Se. Для *a*-GeSe₂ также нет экспериментов, которые бы дали значение $\hbar\omega_0$. В этом смысле определенную помощь предоставляет работа [18], где хотя и нет точных сведений об $\hbar\omega_0$, но приведенная кривая ФЛ близко подходит к 0. Поэтому возможна аппроксимация, которая дает оценку $\hbar\omega_0 = 0.600-0.622$ эВ. Обработка данных [18] также подтверждает присутствие АЖКЩ. При этом из (3) следует

$$N_v(a-\text{GeSe}_2) \approx (1.4-5.3) \cdot 10^{18} \,\text{cm}^{-3}.$$
 (5)

Заметим, что полученное значение близко к оценке, приведенной в [19]: $N_v(a\text{-GeSe}_2) \approx 5.0 \cdot 10^{18} \text{ см}^{-3}$.

Таким образом, формула (3), примененная при тщательной проверке всех необходимых условий, дает значения N_v , определяемые (4), (5). Эти величины согласуются с другими косвенными оценками и показывают, что значения N_s , получаемые из данных по ЭПР, занижены по сравнению с N_v на порядок в случае *a*-As₂S₃, *a*-As₂Se₃ и на 3(!) порядка в случае *a*-GeSe₂.

Цель настоящей работы состоит в том, чтобы указать на возможный механизм, в силу которого значения N_s , полученные в [6,7], отличаются от N_v . Этот механизм основан на определенной модели электронных процессов, которые должны сопровождать фотовоздействие типа зона-зона. Модель не является принципиально новой и может рассматриваться как уточнение известных моделей [3,4,8], которые привлекаются для интерпретации перечисленных ранее эффектов. Однако уточнение моделей позволяет сделать существенный вывод: в установившихся условиях каждый порожденный парамагнитный центр оказывается в окружении случайно расположенных заряженных дефектов.

Работа построена следующим образом. Вопросу модели посвящен раздел 2. В разделе 3 развивается теория воздействия заряженных атомов на обнаружение ЭПР. Основной вывод теории сводится к зависимости между концентрацией спинов, регистрируемых на опыте, (N_s) и величиной N_v . Раздел 4 посвящен сравнению результатов теории с экспериментом. В конце работы дается заключение.

2. Электронные процессы, сопровождающие фотовозбуждение

В рамках модели [3,4] основная схема процессов, сопровождающих возбуждение зона-зона, состоит в следующем. Появляющиеся электрон и дырка захватываются соответственно на антисвязывающий уровень C_3^+ , превращая его в C_3^0 , и на несвязывающий уровень C_1^- , превращая его в C_1^0 . Последний ответствен за наблюдаемый ЭПР [6,7]. В принципе возможна ФЛ, связанная с обратным излучательным переходом

$$C_3^0 + C_1^0 \to C_3^+ + C_1^- + \hbar\omega.$$
 (6)

Однако если исходные центры не расположены тесно и не образуют так называемую "интимную" пару (IVAP), то вероятность "мгновенной"рекомбинации мала [20,21]. Из-за воздействия решетки электрон с центра C_3^0 уходит и оказывается втянутым в процесс прыжковой термализации. Согласно компьютерной оценке, приведенной в [21], при учете насыщения только ~ 39% электронов участвуют в близнецовой рекомбинации. Сказанное означает, что ЭПР обеспечивают ~ 61% от числа создаваемых облучением центров C_1^0 .

Физика и техника полупроводников, 2003, том 37, вып. 1

Рис. 1. Схема образования центра P_2^- .

Заметим, что описанный механизм вполне согласуется как с моделью АЖКЩ, определяющей хвост спектра ФЛ [12], так и с большим стоксовым сдвигом, который не обязательно связан с аномально большой поляронной деформацией. В последнем можно убедиться, если принять, что плотность состояний, по которым движется электрон, вблизи границы зоны проводимости (E_0) быстро убывает в глубь щели, например, по закону $g(E) = g_0 \exp[-(E_0 - E)/\xi]$, и положить $\xi \sim 0.1$ эВ. В [20] показано, что в этих условиях уже в течение 10^{-9} с уменьшение энергии электрона составит ~ 0.7 эВ.

Один вопрос в изложенной модели остается открытым. Что же происходит с тем возбужденным электроном, который не участвует в люминесценции и максимально удаляется от "собственной" дырки? Насколько автору известно, этот вопрос подробно не анализировался. Между тем, по нашему мнению, он имеет ключевое значение как для объяснения, например, внутрищелевого поглощения, так и для интерпретации полученных в дальнейшем результатов.

Ясно, что электрон должен где-то локализоваться, причем, оставляя после себя C_3^+ -центр, он должен образовать состояние с отрицательным зарядом и не парамагнитное. Здесь существенно различаются ситуации в *a*-Se и в *a*-As₂S₃, *a*-As₂Se₃, *a*-GeSe₂. В первом случае в соответствии с экзотермическим процессом

$$2C_3^0 \to C_3^+ + C_1^- \tag{7}$$

два "блуждающих" электрона, попав на центр C_3^+ , должны, разорвав одну связь, превратить его в центры C_1^- и C_2^0 . В случаях *a*-As₂S₃ и *a*-As₂Se₃ ситуация сложнее. Если не учитывать дефекты с неправильными связями, то, как показано в [9], наиболее предпочтительным является процесс типа изображенного на рис. 1. Здесь появление двух электронов вблизи центра C_3^+ приводит к тому, что одна связь обрывается, один электрон создает "нормальный" центр C_2^0 , а второй, благодаря появлению несвязывающей орбитали у атома As, порождает центр P_2^- . Если не считать, что электрон застревает в междоузлии, то в условиях только близнецовой рекомбинации схема рис. 1 представляется единственно возможной. Вместе с тем эта схема может быть подвергнута сомнению, и вероятность образования центров P_2^- может оказаться малой. Такое утверждение связано с результатом работы [22], где показано, что из-за различия электроотрицательности в As и в Se (S) несвязывающая орбиталь As должна находиться вблизи зоны проводимости. Поэтому, если уровень Ферми располагается недалеко от середины цели подвижности, то вместо P_2^- следует ожидать появления центра P_2^+ . Кроме того, энергия U_c , связанная с появлением второго электрона на несвязывающей орбитали, в случае As должна быть существенно выше, чем в случаях Se и S [22].

Нам кажется, что возникающее противоречие разрешается благодаря работам [23,24] (особенно благодаря последней работе). Действительно, где бы электрон ни локализовался, он должен вызывать ту или иную деформацию решетки. Как показано в [23,24], этого достаточно, чтобы произошла гибридизация состояний оборванной связи и ближайшей зоны проводимости. Следствием такой гибридизации является заметное смещение уровня дефекта при оккупации электронами в глубь щели подвижности. Так, если принять, что уровень P_2^+ находится вблизи дна зоны проводимости (энергию которого примем за 0), то, согласно [23,24], для энергий различных P_n^{α} -состояний будем иметь

$$E(P_2^+) = 0, \quad E(P_2^0) = -\Delta W/2, \quad E(P_2^-) = U_c - \Delta W, \quad (8)$$

где положительная величина ΔW определяется степенью гибридизации. Из (8) видно, что

$$U^{-} = E(P_{2}^{-}) + E(P_{2}^{+}) - 2E(P_{2}^{0}) = U_{c} - \Delta W.$$
 (9)

Кроме того, из сравнения (8), (9) следует

$$E(P_2^-) = U^- - \Delta W.$$
 (10)

Данные, приведенные в [23,24], показывают, что даже в условиях умеренных деформаций величина ΔW вполне может обеспечить выполнение требования $U^- < 0$. При этом из (10) следует, что независимо от величины U_c уровень $E(P_2^-)$ может опуститься глубоко внутрь запрещенной зоны. (Заметим, кстати, что такой уровень может быть использован для интерпретации внутрищелевого поглощения).

Итак, рассмотренная модель процессов, протекающих в a-As₂S₃, a-As₂Se₃ при облучении зона–зона, приводит к следующей картине. Определенная доля дефектов оказывается вовлеченной в процесс ФЛ по схеме (6). В условиях близнецовой рекомбинации концентрация таких дефектов составляет $\sim 0.39N_v$. Остальные дефекты распадаются на центры C_1^0 , ответственные за ЭПР (концентрация $\sim 0.61N_v$), и на заряженные дефекты C_3^+ и P_2^- с концентрациями $\sim 0.305N_v$ каждый. Таким образом, концентрации образующихся заряженных дефектов составляют:

$$N(C_3^+) = 0.695 N_v, \qquad N(C_1^-) = 0.39 N_v,$$

 $N(P_2^-) = 0.305 N_v.$ (11)

В случае *a*-GeSe₂ ситуация в целом должна быть аналогичной описанной выше. Однако существенное различие состоит в том, что вместо центров P_2^- должны появиться центры Т₃⁻ [9]. Последние образуют более жесткую структуру, и эффект заглубления уровня может оказаться ослабленным. В этих условиях в ущерб образованию T_3^- -центров может существенно увеличиться вероятность межпарной рекомбинации. В этих условиях следует ожидать ослабления эффекта усталости ФЛ. В связи со сказанным обратимся к рис. 7 работы [7]. На нем показана зависимость от времени (t) процента уменьшения интенсивности ФЛ для случаев *a*-As₂Se₃ и a-GeSe2. Для расшифровки рисунка учтем, что изображенная на нем величина соответствует зависимости [I(0) - I(t)]/I(0), где I(t) — интенсивность ФЛ. При t = 0, когда процесс только начинается, $I(0) \propto N_v$ (концентрация центров C_3^+ и C_1^- , появившихся в результате превращения (6), практически нулевая). В установившемся режиме $I(\infty) \propto \gamma N_v$, где γ — доля рекомбинирующих центров. Поэтому

$$\left[I(0) - I(\infty)\right] / I(0) \approx 1 - \gamma.$$
(12)

Выше мы отмечали, что, согласно [21], в условиях только близнецовой рекомбинации $\gamma \approx 0.39$. Это очень точно соответствует рис. 7 работы [7] для *a*-As₂Se₃. Нетрудно проверить, что в этом случае при насыщении $1 - \gamma = 0.61$. В случае *a*-GeSe₂ соответствующее значение много меньше: $1 - \gamma = 0.09$. Тем самым косвенно подтверждается предположение о вкладе межпарной рекомбинации.

Таким образом, в случае a-GeSe₂ концентрация C_1^0 центров должна составлять $0.09N_v$, а концентрации заряженных дефектов должны быть равны:

$$N(C_3^+) = 0.955 N_v, \qquad N(C_1^-) = 0.91 N_v,$$

 $N(T_3^-) = 0.045 N_v.$ (13)

Наконец, в случае а-Se согласно (7)

$$N(C_3^+) = N(C_1^-) = 0.695 N_v.$$
(14)

Влияние заряженных дефектов на обнаружение ЭПР

Из предыдущего следует, что в установившемся режиме каждый парамагнитный центр C_1^0 должен быть окружен множеством случайно распределенных положительных и отрицательных дефектов. Согласно теореме Хольцмарка [25], нескомпенсированный заряд парамагнитного атома должен прежде всего "чувствовать" поле ближайшего заряженного соседа каждого типа. Последний не является неподвижным, а представляет собой осциллятор. Поэтому мы сталкиваемся с разновидностью известной квантовой задачи о взаимодействии атомного электрона с движущейся заряженной частицей [26].

В этом случае в гамильтониане электрона должна появиться добавка

$$H_c(t) = \pm \frac{e_0^2}{\varkappa \left| \mathbf{R}(t) - \mathbf{r} \right|} \approx \pm \frac{e_0^2}{\varkappa R(t)},\tag{15}$$

где предполагается, что начало координат совмещено с парамагнитным центром, $\mathbf{R}(t)$ — координата заряженного дефекта, зависящая от времени t, \mathbf{r} — координата носителя спина. При этом принято во внимание, что в равновесных условиях $R(t) \gg r$, и использовано допущение, согласно которому характерные изменения R(t)(δR), связанные с вариацией положения заряженного дефекта, не выходят за рамки условия

$$\delta R/R(t) \ll 1. \tag{16}$$

Далее мы убедимся в том, что (16) выполняется с существенным запасом.

Так как фазы колебаний отдельных заряженных атомов не согласованы, расстояние как функцию времени R(t) следует считать случайным. Здесь с точки зрения возможного влияния на ЭПР необходимо различать две ситуации. Если характерное время вариации R(t) (δt) удовлетворяет условию $\delta t \gg \omega_1^{-1}$, где ω_1 — частота резонансного перехода, то добавка (15) никакого влияния не окажет. В нашем случае $\omega_1 \sim 10^{10} \text{ c}^{-1}$ [6]. В то же время $\delta t \sim \omega^{-1}$, где ω — фононная частота, $\omega \gtrsim 10^{13} \text{ c}^{-1}$. Таким образом, в нашем случае $\delta t \ll \omega_1^{-1}$. Это означает, что за время перехода добавка (15) успеет многократно и случайным образом изменить свое значение. Это обстоятельство должно быть отражено в гамильтониане, который становится явно зависящим от времени *t*:

$$H(t) = H_0 + \frac{g\beta B}{\hbar}\hat{s}_z + H_c(t).$$
(17)

Здесь H_0 — гамильтониан в отсутствие постоянного магнитного поля (B) и случайно изменяющегося электрического поля, т.е. $H_c(t)$, \hat{s}_z — оператор спина электрона, β — магнетон Бора,

$$\beta = \frac{e_0 \hbar}{2m_0} = 5.795 \cdot 10^{-5}$$
 эВ/Тл. (18)

Фигурирующий в (17) *g*-фактор мы везде в дальнейшем будем считать равным 2.

В *Приложении* показано, что в рассматриваемых условиях поглощается микроволновый квант с энергией, определяемой соотношением

$$\hbar\omega_1 = 2\beta B + [E(\delta t) - E(0)], \qquad (19)$$

что иллюстрирует рис. 2. Так как $E(\delta t)$ — величина случайная, в условиях, когда характерный разброс разности $E(\delta t) - E(0)$ (δE) превышает зеемановское расщепление $2\beta B$, резонанс окажется "размазанным". Поэтому наблюдаемый сигнал ЭПР может быть обеспечен только такими центрами, для которых справедливо неравенство

$$\delta E < 2\beta B. \tag{20}$$

Рис. 2. Модель резонансного перехода в условиях слабого сдвига уровней.

Рис. 3. Модель случайного изменения расстояния между спином и заряженным дефектом.

Согласно (15), (16) это означает, что расстояние от центра до любого заряженного дефекта типа i ($i = C_3^+$, C_1^- , P_2^- , T_3^-) должно подчиняться требованию

$$R(t) > R_0(i) \approx \left(\frac{e_0^2}{\varkappa} \frac{\delta R_i}{2\beta B}\right)^{1/2}.$$
 (21)

Предположим, что заряженный атом смещается на некоторое расстояние $\delta \rho(i)$. Его расстояние до носителя спина при этом получит приращение δR_i , которое подчиняется условию (см. рис. 3)

$$\delta R_i \approx \delta \rho(i) \cos \theta. \tag{22}$$

Производя усреднение δR_i^2 по всем возможным значениям угла θ на плоскости, которую всегда образуют центры на рис. 3, можно убедиться, что

$$\left(\langle \delta R_i^2 \rangle\right)^{1/2} = 0.707 \,\delta \rho(i). \tag{23}$$

Использовав (23) в качестве оценки δR_i в (21), будем иметь

$$R(t) > R_0(i) \approx \left(\frac{e_0^2}{\varkappa} \frac{0.707 \,\delta\rho(i)}{2\beta B}\right)^{1/2}.$$
 (24)

Физика и техника полупроводников, 2003, том 37, вып. 1

В общем случае для характерного значения $\delta \rho(i)$ можно написать [26]

$$\delta\rho(i) = \left[\frac{\hbar}{m\omega_i}\left(n+\frac{1}{2}\right)\right]^{1/2},\qquad(25)$$

где m — масса колеблющегося атома, ω_i — частота и

$$n = \left(\exp\frac{\hbar\omega_i}{k_0T} - 1\right)^{-1}.$$
 (26)

Согласно распределению Пуассона, вероятность того, что для данного парамагнитного центра в отношении дефекта *i* условие (24) выполняется, равна

$$\operatorname{Prob}\left[R(t) > R_0(i)\right] = \exp\left\{-\left[\frac{4\pi}{3}R_0(i)\right]^3 N(i)\right\}, \quad (27)$$

где N(i) — концентрация дефектов типа *i*.

Если считать, что корреляция в расположении дефектов (в том числе и разноименно заряженных) отсутствует, то на основании (27) концентрацию регистрируемых спинов можно оценить из соотношения

$$N_s = (1 - \gamma)N_v \prod_i \exp\left\{-\left[\frac{4\pi}{3}R_0(i)\right]^3 N(i)\right\}.$$
 (28)

4. Сравнение с экспериментом

Из (24), (25) следует, что для сравнения (28) с экспериментом необходимо располагать сведениями о частотах ω_i . Насколько автору известно, непосредственных измерений частот колебаний дефектов C_3^+ , C_1^- , P_2^- , $T_3^$ в интересующих нас полупроводниках не проводилось. Поэтому мы будем исходить из ряда общих положений, которые позволят оценить $R_0(i)$.

Во-первых, учтем, что все рассматриваемые дефекты могут быть сопоставлены с тремя типами молекулярных образований:

$$XY_3(C_3^+, T_3^-), XY_2(P_2^-), Y_1(C_1^-).$$

Согласно [19], каждая из упомянутых молекул характеризуется определенным набором ортогональных колебаний, определяемых видом деформаций. Так, в случае XY₃ мы имеем изгибающие (bending) колебания, частота $\omega_{b3}(i)$, и растягивающие (stretching) колебания, частота $\omega_{s3}(i)$. При этом, если учесть, что в наших условиях $\omega(i) \gtrsim 10^{13} \,\mathrm{c}^{-1}$ (см. далее), а эксперименты по ЭПР проводились при $T = 4.2 \,\mathrm{K}$ [6,7], то, согласно (26), мы (как и везде в дальнейшем) величиной *n* в (25) можем пренебречь. Соответственно будем иметь

$$\delta\rho(i) = \left[\delta\rho_{b3}^{2}(i) + \delta\rho_{s3}^{2}(i)\right]^{1/2}$$
$$= \left[\frac{\hbar}{2m_{\rm X}(i)}\right]^{1/2} \left[\frac{1}{\omega_{b3}(i)} + \frac{1}{\omega_{s3}(i)}\right]^{1/2}.$$
 (29)

В случае XY₂ к упомянутым выше колебаниям следует добавить еще раскачивающее (rocking) колебание с частотой $\omega_{r2}(i)$ [27]. Поэтому получим

$$\delta\rho(i) = \left[\frac{\hbar}{2m_{\rm X}(i)}\right]^{1/2} \left[\frac{1}{\omega_{b2}(i)} + \frac{1}{\omega_{s2}(i)} + \frac{1}{\omega_{r2}(i)}\right]^{1/2}.$$
 (30)

Наконец, в случае C_1^- имеем [19]

$$\delta \rho(i) = \left(\frac{\hbar}{2m_{\rm X}(i)\omega_{s1}(i)}\right)^{1/2}.$$
 (31)

Если бы все дефекты можно было рассматривать как свободные молекулы (СМ), то для определения частот, фигурирующих в (29), (30), можно было бы воспользоваться формулами, приведенными в [28]:

$$\omega_{b3}^2 = \frac{3k_r}{m_{\rm X}} \left[\frac{m_{\rm X}}{3m_{\rm Y}} + \cos^2 \beta + \left(\frac{m_{\rm X}}{3m_{\rm Y}} + \sin^2 \beta \right) \frac{12\cos^2 \beta}{1 + 3\cos^2 \beta} \nu \right], \qquad (32)$$

$$\omega_{s3}^{2} = \frac{3k_{r}}{2m_{X}} \left\{ \frac{2m_{X}}{3m_{Y}} + \sin^{2}\beta + \frac{3\left[(2m_{X}/3m_{Y})(1 + \cos^{2}\beta) + \sin^{4}\beta\right]}{2m_{X}} \right\}$$
(33)

$$+\frac{1+3\cos^2\beta}{1+3\cos^2\beta},\quad(33)$$

$$\omega_{b2}^2 = \frac{2k_r}{m_X} \left[\frac{m_X}{2m_Y} + \cos^2 \alpha + 2\left(\frac{m_X}{2m_Y} + \sin^2 \alpha\right) \nu \right], \quad (34)$$

$$\omega_{s2}^2 = \frac{2k_r}{m_X} \left(\frac{m_X}{2m_Y} + \sin^2 \alpha \right). \tag{35}$$

В этом же приближении для C_1^- естественно воспользоваться приведенной массой:

$$\omega_{s1}^2 = \frac{k_r}{m_{\rm X}} \left(\frac{m_{\rm X}}{m_{\rm Y}} + 1\right). \tag{36}$$

В соотношениях (32)–(36) k_r — силовая постоянная для связи X–Y, $\nu = k_{\theta}/k_r$, где k_{θ} — силовая постоянная для смещений, перпендикулярных X–Y, β — угол между связью X–Y и осью симметрии молекулы, 2α — угол в точке X между двумя связями X–Y.

В связи с применением формул (32)–(36) возникают следующие проблемы. Во-первых, необходимо определить значения k_r и ν . Во-вторых, нужно оценить углы β и α . Далее, надо принять во внимание то обстоятельство, что в нашем случае атомы X заряжены.

Необходимо также выяснить, в какой степени применимо приближение СМ. Совершенно очевидно, что в нашем случае атомы Y связаны, и нельзя исключить, что более точным окажется приближение неподвижных атомов Y (HAY), которое рассматривалось в [19]. В этом случае в (32)–(36) надлежит положить $m_{\rm Y} = \infty$.

Наконец, остается открытым вопрос о частоте ω_{r2} .

Вопрос о коэффициентах k_r и v решается сравнительно легко. Для случаев a-As₂S₃, a-As₂Se₃, a-GeSe₂ значения k_r приведены в [29]. Из этой же работы можно оценить значения v для случаев P_2^- и T_3^- . В случае C_3^+ нами было принято значение v = 0.01 [30]. Наконец, значение k_r для случая a-Se было определено по методу Горди [31].

Углы β и α определялись следующим образом. В работе [32] обращено внимание на то, что для многих структур типа XY₃ с разными соотношениями масс атомов X и Y хорошим приближением является $\beta = 60^{\circ}$. Это условие было нами принято в случаях C_3^+ и T_3^- . Для угла α , важного для P_2^- -состояния, было учтено, что в решетках As₂S₃, As₂Se₃ атомы халькогена (S, Se) между собой не связаны. Поэтому удаление одного атома Y из структуры XY₃ (см. рис. 1) не должно заметно влиять на положение двух остальных. В этом случае, полагая неизменным ковалентный характер связи X–Y и исходя из условия [19,28]

$$\sin \alpha = \frac{\sqrt{3}}{2} \sin \beta, \tag{37}$$

положив $\beta = 60^{\circ}$, получим $\alpha = 48.6^{\circ}$.

Заряженность атомов X может влиять на два обстоятельства. Во-первых, сдвигается положение равновесия [23,24]. Во-вторых (и это для определения частот особенно важно), заряженность сказывается на величине силовых постоянных. С помощью эмпирических формул, приведенных в [31] (и подогнанных под значения k_r , приведенные в [29]), нами был подробно проанализирован эффект влияния зарядов на $\delta \rho(i)$. Эффект оказался чрезвычайно малым, способным влиять на N_s только во 2-м порядке. Основная причина заключается в том, что разноименные заряды влияют на k_r в разные стороны. В нашем случае количества отрицательных и положительных дефектов одинаковы.

Наибольшую проблему для определения $\delta\rho(i)$ представляет выбор между приближениями СМ и НАҮ. Как указывалось, в работе [19] применялось приближение НАҮ. Основанием для такого подхода служило то обстоятельство, что в [19] рассматривался v-SiO₂, где в структуре C_3^+ каждый атом Y (Si) помимо связи с атомом X (O⁺) имеет еще тройную координацию, не говоря уже о том, что масса Si почти в 2 раза превышает массу О. В нашем случае такая ситуация может относиться только в дефектам C_3^+ в *a*-GeSe₂. Во всех остальных случаях делать вывод в пользу какоголибо из рассматриваемых приближений затруднительно. Поэтому были рассмотрены оба варианта. Очевидно, правильное значение N_s в приближении НАҮ.

Последний вопрос, связанный с частотой ω_{r2} , был решен следующим образом. По данным [27] в системах As_2O_3 , As_2S_3 , $GeSe_2$ частота колебаний мостикового атома, т.е. последовательно O, S, Se, с хорошей точностью

Приближение НАҮ								
Вещество	$\delta\! ho(C_3^+),\ 10^{-10}\mathrm{cm}$	$\delta\! ho(C_1^-),\ 10^{-10}{ m cm}$	$\delta\! ho(P_2^{-}),\ 10^{-10}{ m cm}$	$\delta\! ho(T_3^-),\ 10^{-10}{ m cm}$				
$\begin{array}{c} a-\mathrm{As}_2\mathrm{S}_3\\ a-\mathrm{As}_2\mathrm{Se}_3\\ a-\mathrm{GeSe}_2\\ a-\mathrm{Se} \end{array}$	6.322 5.327 5.226 4.592	4.393 3.701 3.632 3.191	6.643 6.790 – –	 5.079 				
Приближение СМ								
Вещество	$\delta\! ho(C_3^+),\ 10^{-10}\mathrm{cm}$	$\delta\! ho(C_1^-),\ 10^{-10}{ m cm}$	$\delta\! ho(P_2^{-}),\ 10^{-10}{ m cm}$	$\delta\! ho(T_3^-)$, $10^{-10}{ m cm}$				

Таблица 1. Значения $\delta \rho(i)$ в соответствии с (29)–(31)

Вещество	$\delta\! ho(C_3^+)$, $10^{-10}{ m cm}$	$\delta\! ho(C_1^-)$, $10^{-10}{ m cm}$	$\delta\! ho(P_2^{-}),\ 10^{-10}{ m cm}$	$\delta\! ho(T_3^-)$, $10^{-10}{ m cm}$
$a-As_2S_3$	5.743	3.994	5.837	-
a-As ₂ Se ₃	4.389	3.009	5.653	_
a-GeSe ₂	4.285	3.104	-	4.481
a-Se	3.810	2.263	-	—

следует зависимости

$$\frac{\omega_{r2}(j)}{\omega_{r2}(i)} = \left(\frac{m_i}{m_j}\right)^{1/2},\tag{38}$$

где m_i , m_j — массы указанных атомов. В условиях *a*-As₂S₃, *a*-As₂Se₃ в состоянии P_2^- роль мостикового атома играет As (рис. 1). Поэтому частоты $\omega_{r2}(P_2^-)$ в соответствии с (38) нами были определены как

$$\omega_{r2}(P_2^-, \operatorname{As}_2 S_3) = \omega_{r2}(\operatorname{As}_2 S_3) \sqrt{\frac{m_{\rm S}}{m_{\rm As}}} = 1.97 \cdot 10^{13} \,\mathrm{c}^{-1},$$

$$\omega_{r2}(P_2^-, \operatorname{As}_2 \operatorname{Se}_3) = \omega_{r2}(\operatorname{GeSe}_2) \sqrt{\frac{m_{\rm Se}}{m_{\rm As}}} = 1.94 \cdot 10^{13} \,\mathrm{c}^{-1},$$

(39)

где в последнем случае использована близость масс Ge и As.

В табл. 1 приведены все значения $\delta\rho(i)$, которые в соответствии с (29)–(31) были получены из (32)–(36), (39) в приближениях СМ и НАҮ. В табл. 2 даны соответствующие значения $R_0(i)$, полученные из (24), и значения N_s , вычисленные по формуле (28). При этом на основании данных [6] в случаях *a*-As₂S₃, *a*-As₂Se₃ и *a*-Se было использовано значение магнитного поля B = 3191 Гс, а в случае *a*-GeSe₂ — значение B = 3164 Гс. Значения N(i) подставлялись согласно (11) в случаях *a*-As₂S₃, *a*-As₂Se₃, согласно (13) в случае *a*-GeSe₂ и согласно (14) в случае *a*-Se. Экспериментальные значения N_s взяты из (1).

5. Заключение

Комментируя данные, приведенные в табл. 1, 2, прежде всего отметим, что согласно (23) во всех случаях

$$\delta R_i / R_0(i) \lesssim 10^{-3}. \tag{40}$$

Тем самым подтверждается условие (16), играющее важную роль при выводе основных соотношений.

Далее, обратим внимание на следующее. Для *a*-Se величина N_v заранее не была известна. Приведенное в таблице значение $N_v = 1.65 \cdot 10^{16} \,\mathrm{cm^{-3}}$ есть результат подгонки под значение $N_s = 10^{16} \,\mathrm{cm^{-3}}$, которое должно получаться, согласно [6,7], в случае справедливости (28). Таким образом, если $N_v \lesssim 10^{16} \,\mathrm{cm^{-3}}$, то из данных табл. 2 следует, что заряженные дефекты на обнаружение ЭПР практически не влияют, причем в обоих использованных приближениях.

По-другому выглядит ситуация в случаях a-As₂S₃ и a-As₂Se₃. Здесь использование значений N_v , диктуемых формулой (3), (см. (4)) приводит к величинам N_s , кото-

Таблица 2. Критические расстояния R_0 и концентрации U^- -центров N_v и спинов N_s

Приближение НАҮ								
Вещество	R ₀ (C ⁺ ₃), 10 ⁻⁷ см	$R_0(C_1^-)$, $10^{-7}{ m cm}$	R ₀ (P ₂ ⁻), 10 ⁻⁷ см	R ₀ (T ₃ ⁻), 10 ⁻⁷ см	$N_v,$ cm ⁻³	<i>N</i> _s , см ⁻³	<i>N_s</i> , см ⁻³ (эксперимент [6,7])	
$a-As_2S_3$ $a-As_2Se_3$ $a-GeSe_2$ a-Se	5.215 4.392 5.136 4.590	4.347 3.662 4.281 3.826	5.345 4.959 - -	 5.063 	$\begin{array}{c} 2.4\cdot 10^{18}\\ 2.5\cdot 10^{18}\\ 5.0\cdot 10^{18}\\ 1.65\cdot 10^{16}\end{array}$	$\begin{array}{c} 2.5\cdot 10^{17} \\ 4.5\cdot 10^{17} \\ 5.9\cdot 10^{15} \\ 1.0\cdot 10^{16} \end{array}$	$egin{array}{c} \sim 10^{17} \ \sim 10^{17} \ \sim 5 \cdot 10^{15} \ \sim 10^{16} \end{array}$	
Приближение СМ								
Вещество	R ₀ (C ⁺ ₃), 10 ⁻⁷ см	R ₀ (C ₁ ⁻), 10 ⁻⁷ см	R ₀ (P ₂ ⁻), 10 ⁻⁷ см	R ₀ (T ₃ ⁻), 10 ⁻⁷ см	$N_v,$ cm ⁻³	N_s , cm ⁻³	<i>N_s</i> , см ⁻³ (эксперимент [6,7])	
$a-As_2S_3$ $a-As_2Se_3$ $a-GeSe_2$ a-Se	4.970 3.897 5.136 4.181	4.145 3.302 3.958 3.222	5.010 4.525 - -	- - 4.756 -	$\begin{array}{c} 2.4\cdot 10^{18} \\ 2.5\cdot 10^{18} \\ 5.0\cdot 10^{18} \\ 1.65\cdot 10^{16} \end{array}$	$\begin{array}{c} 3.2\cdot 10^{17} \\ 6.4\cdot 10^{17} \\ 8.2\cdot 10^{15} \\ 1.0\cdot 10^{16} \end{array}$	$\sim 10^{17} \ \sim 10^{17} \ \sim 5 \cdot 10^{15} \ \sim 10^{16}$	

рые хорошо согласуются с данными наблюдений [6,7] — см. (1), причем как в случае НАҮ, так и в приближении СМ. Другими словами, более высокая по сравнению с *a*-Se концентрация врожденных U^- -центров оказывается ответственной за снижение регистрируемого значения N_s на порядок по сравнению с N_v . Еще более наглядно это проявляется в случае *a*-GeSe₂. Конечно, определенное влияние оказывают и более низкая доля электронов, участвующих в близнецовой рекомбинации, и относительно невысокая диэлектрическая проницаемость. Однако в том, что величина N_s на 3 порядка меньше величины $N_v = 5 \cdot 10^{18}$ см⁻³, соответствующей (3) и [19], решающим оказывается обстоятельство, что величина N_v не мала, а, напротив, велика.

В заключение обратим внимание на следующее. Основной вывод данной работы таков: заряженые центры, которые при фотовозбуждении невысокой мощности происходят из врожденных U⁻-центров, могут при достаточной концентрации последних заметно уменьшить регистрируемую концентрацию наведенных спинов. В этой связи привлекает внимание такой материал, как v-SiO₂. Концентрация U^- -центров в нем, по всей видимости, велика ($\sim 10^{19} \,\mathrm{cm}^{-3}$ [13,19]). Поэтому, если учесть еще малость диэлектрической проницаемости, то возникает вопрос о возможности наблюдения фото-ЭПР в v-SiO₂ вообще. Известен ряд работ, где сигнал фото-ЭПР в v-SiO₂ наблюдался (см., например, [33]). Нам кажется, однако, что в упомянутых работах фотовозбуждение нельзя, строго говоря, относить к типу зона-зона. Кроме того, формы кривой резонанса в них не вполне идентичны кривым, представленным в [6,7], и требуют расшифровки.

Во всяком случае в свете результатов данной работы вопрос о фото-ЭПР в *v*-SiO₂ (равно, как и совокупность проблем, возникающих в условиях фотоструктурных изменений) требуют самостоятельного изучения.

Приложение

Обозначим через V(t) микроволновое возмущение и рассмотрим уравнение Шредингера

$$i\hbar \frac{\partial \Psi}{\partial t} = [H(t) + V(t)]\Psi.$$
 (Π.1)

Для перехода в представление взаимодействия положим

$$\Psi = \exp\left[-\frac{i}{\hbar}\int_{0}^{t}H(s)\,ds\right]\Phi.\tag{\Pi.2}$$

Подставив (П.2) в (П.1) и "умножив" слева на $\exp[(i/\hbar)\int_{0}^{t} H(s) ds]$, получим

$$i\hbar \frac{\partial \Phi}{\partial t} = \left[\exp\left(\frac{i}{\hbar} \int_{0}^{t} H(s) \, ds\right) H(t) \right]$$
$$\times \exp\left(-\frac{i}{\hbar} \int_{0}^{t} H(s) \, ds\right) - H(t)$$
$$+ \exp\left(\frac{i}{\hbar} \int_{0}^{t} H(s) \, ds\right) V(t)$$
$$\times \exp\left(-\frac{i}{\hbar} \int_{0}^{t} H(s) \, ds\right) = 0. \tag{\Pi.3}$$

При написании (П.3) учтено, что, согласно (17),

$$[H(t), H(s)] = H_0(H_c(s) - H_c(t)) - (H_c(s) - H_c(t))H_0 \neq 0.$$
(II.4)

Из (П.3) в первом приближении теории возмущений будем иметь

$$\Phi(\delta t) = \frac{1}{i\hbar} \int_{0}^{\delta t} dt \left[\exp\left(\frac{i}{\hbar} \int_{0}^{t} H(s) ds\right) H(t) \right]$$

$$\times \exp\left(-\frac{i}{\hbar} \int_{0}^{t} H(s) ds\right) - H(t)$$

$$+ \exp\left(\frac{i}{\hbar} \int_{0}^{t} H(s) ds\right) V(t)$$

$$\times \exp\left(-\frac{i}{\hbar} \int_{0}^{t} H(s) ds\right) \Phi(0). \quad (\Pi.5)$$

Введем спектр собственных функций

$$(H_0 + H_c(t))\varphi(t) = E(t)\varphi(t). \tag{\Pi.6}$$

Кроме того, введем спиновые функции $|-1/2\rangle$, $|+1/2\rangle$, которые удовлетворяют условиям

$$\hat{s}_{z} \left| \pm 1/2 \right\rangle = \pm \frac{\hbar}{2} \left| \pm 1/2 \right\rangle.$$
 (П.7)

Полагая, что при t = 0 система находится в состоянии

$$\Phi(0) = \varphi(0) |-1/2\rangle \equiv |u_{-}(0)\rangle, \qquad (\Pi.8)$$

согласно (П.5), (П.7) для амплитуды перехода в состояние

$$u_{+}(\delta t) \equiv \varphi(\delta t) |+1/2\rangle$$
 (П.9)

Физика и техника полупроводников, 2003, том 37, вып. 1

можно написать

$$\langle u_{+}(\delta t) | \Phi(\delta t) \rangle = \frac{1}{i\hbar} \langle u_{+}(\delta t) \int_{0}^{\delta t} dt \exp\left(\frac{i}{\hbar} \int_{0}^{t} H(s) \, ds\right) V(t)$$
$$\times \exp\left(-\frac{i}{\hbar} \int_{0}^{t} H(s) \, ds\right) | u_{-}(0) \rangle, \qquad (\Pi.10)$$

где принята во внимание ортогональность спиновых функций. Учитывая (17), нетрудно понять, что в (П.10) мы столкнемся с операциями вида

$$[H_0 + H_c(s)]\varphi(0), \qquad [H_0 + H_c(s)]\varphi(\delta t),$$

которые в общем случае (при $s \neq 0$, $s \neq \delta t$) не определены. Однако на основании (15), (16), (П.6) можно написать

$$\begin{split} & [H_0 + H_c(s)]\varphi(0) \\ &= \left[H_0 + H_c(0) \left(1 + \frac{H_c(s) - H_c(0)}{H_c(0)} \right) \right] \varphi(0) \\ &\approx \left[H_0 + H_c(0) \left(1 - \frac{\delta R}{R(0)} \right) \right] \varphi(0) \approx E(0)\varphi(0), \quad (\Pi.11) \end{split}$$

где использовано соотношение

$$1/R(s) - 1/R(0) \approx \delta R/R^2(0).$$

Аналогичным образом запишем

$$\begin{split} & \left[H_0 + H_c(s)\right]\varphi(\delta t) \\ &= \left[H_0 + H_c(\delta t)\left(1 + \frac{H_c(s) - H_c(\delta t)}{H_c(\delta t)}\right)\right]\varphi(\delta t) \\ &\approx \left[H_0 + H_c(\delta t)\left(1 \mp \frac{\delta R}{R(\delta t)}\right)\right]\varphi(\delta t) \\ &\approx E(\delta t)\varphi(\delta t). \end{split} \tag{\Pi.12}$$

Из (П.11), (П.12), (П.7), (17) следует

$$H(s)\varphi(0)|-1/2\rangle \approx [E(0)-\beta B]\varphi(0)|-1/2\rangle,$$

$$H(s)\varphi(\delta t)|+1/2\rangle \approx [E(\delta t)+\beta B]\varphi(\delta t)|+1/2\rangle.$$
 (II.13)

Отсюда, положив

$$V(t) = \frac{\beta}{\hbar} B_1 \hat{s}_x \left(e^{i\omega_1 t} + e^{-i\omega_1 t} \right), \qquad (\Pi.14)$$

где B_1 — амплитуда ортогонального магнитного поля, изменяющегося с частотой ω_1 , подставив (П.13), (П.14) в (П.10), получим

$$\langle u_{+}(\delta t) | \Phi(\delta t) \rangle \approx \frac{1}{i\hbar^{2}} \int_{0}^{\delta t} dt \, \mathrm{e}^{(1/\hbar)[E(\delta t) - E(0) + 2\beta B - \hbar\omega_{\mathrm{i}}]t} \\ \times \langle \varphi(\delta t) | \varphi(0) \rangle \langle +1/2 | \hat{s}_{x} | -1/2 \rangle.$$
 (II.15)

Физика и техника полупроводников, 2003, том 37, вып. 1

Из (П.15), применив стандартные методы [26], для вероятности резонансного перехода будем иметь

$$\begin{split} \left| \langle u_{+}(\delta t) | \Phi(\delta t) \right|^{2} \propto \left| \langle \varphi(\delta t) | \varphi(0) \rangle \right|^{2} \\ \times \delta \big(E(\delta t) - E(0) + 2\beta B - \hbar \omega_{1} \big). \end{split} \tag{\Pi.16}$$

Из (П.16) видно, что переходы возможны при соблюдении, во-первых, условия перекрытия $\langle \varphi(\delta t) | \varphi(0) \rangle \neq 0$ и, во-вторых, условия (19).

Список литературы

- K. Shimakawa, A. Kolobov, S.R. Elliott. Adv. Phys., 44, 475 (1995).
- [2] С.Д. Барановский, В.Г. Карпов. ФТП, 21, 3 (1987).
- [3] R.A. Street, N.F. Mott. Phys. Rev. Lett., 35, 1293 (1975).
- [4] M. Kastner, D. Adler, H. Fritzsche. Phys. Rev. Lett., 37, 1504 (1976).
- [5] M. Kastner, H. Fritzsche. Phil. Mag. B, 37, 199 (1978).
- [6] S.G. Bishop, U. Strom, P.C. Taylor. Phys. Rev. B, 15, 2278 (1977).
- [7] S.G. Bishop, U. Strom, P.C. Taylor. Amorphous and Liquid Semiconductors. Proc. 7 Int. Conf. (Edinburgh, 1977) p. 595.
- [8] R.A. Street. Adv. Phys., 25, 397 (1976).
- [9] R.A. Street, G. Lukovsky. Sol. St. Commun., 31, 289 (1979).
- [10] K. Shimakawa, S.R. Elliott. Phys. Rev. B, 38, 12479 (1988).
- [11] L.P. Ginzburg. J. Non-Cryst. Sol., 171, 172 (1994).
- [12] Л.П. Гинзбург, А.П. Жилинский. ЖТФ, 72, 59 (2002).
- [13] L.P. Ginzburg. J. Non-Cryst. Sol., 171, 164 (1994).
- [14] J. Chernogora, F. Mollot, C. Benoit a la Guillaume. Phys. St. Sol. (a), 15, 401 (1973).
- [15] F. Mollot, J. Chernogora, C. Benoit a la Guillaume. Phys. St. Sol. (a), 21, 281 (1974).
- [16] T.T. Nang, M. Okuda, T. Matsushita. J. Non-Cryst. Sol., 33, 323 (1979).
- [17] Н. Мотт, Э. Дэвис. Электронные процессы в некристаллических веществах (М., Мир, 1974) с. 357. [Пер. с англ.: N.F. Mott, E.A. Davis. Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1971)].
- [18] V.A. Vassilyev, M. Koos, I. Kosa Somogyi. Sol. St. Commun., 22, 633 (1977).
- [19] G. Lukovsky. Phil. Mag. B, 39, 513 (1979).
- [20] M. Kastner. J. Non-Cryst. Sol., 35–36, 807 (1980).
- [21] B.I. Shklovskii, H. Fritzsche, S.D. Baranovskii. J. Non-Cryst. Sol., 114, 325 (1989).
- [22] D. Vanderbilt, J.D. Joannopoulos. Phys. Rev. B, 23, 2596 (1981).
- [23] К.Д. Цэндин. Письма ЖЭТФ, 55, 635 (1992).
- [24] К.Д. Цэндин. В сб.: Электронные явления в халькогенидных стеклообразных полупроводниках, под ред. К.Д. Цэндина (СПб., Наука, 1996) с. 68.
- [25] J. Holtsmark. Physik Zs., 20, 162 (1919).
- [26] А.С. Давыдов. *Квантовая механика* (М., Наука, 1973) с. 435, 443.
- [27] G. Lukovsky, C.K. Wong, W.B. Pollard. J. Non-Cryst. Sol., 59–60, 839 (1983).
- [28] Г. Герцберг. Колебательные и вращательные спектры многоатомных молекул (ИЛ, 1949) гл. 2. [Пер. с англ.: G. Herzberg. Infrared and Raman Spectra of Polyatomic Molecules (N.Y., 1945) ch. 2].

- [29] G. Lukovsky, R.J. Nemanich, S.A. Solin, R.C. Keezer. Sol. St. Commun., 17, 1567 (1975).
- [30] G. Lukovsky, R.M. Martin. J. Non-Cryst. Sol., 8–10, 185 (1972).
- [31] W. Gordy. J. Chem. Phys., 14, 305 (1946).
- [32] G. Lukovsky. Phys. Rev. B, 6, 1480 (1972).
- [33] J.H. Stathis, M. Kastner. Phys. Rev. B, 29, 7079 (1984).

Редактор Л.В. Шаронова

The influence of charged defects upon detecting ESR in glassy chalcogenide semiconductors

L.P. Ginzburg

Moscow Technical University of Communications and Informatics 111024 Moscow, Russia

Abstract On the base of investigation of electronic processes accompanying band-to-bend photoexcitation a dependence between detected spin concentration and the concentration of native U^- -centers is established.