Определение констант деформационного потенциала *n*-Si, *p*-Si по концентрационному ангармонизму

© А.А. Скворцов[¶], О.В. Литвиненко, А.М. Орлов

Ульяновский государственный университет, 432700 Ульяновск, Россия

(Получена 27 февраля 2002 г. Принята к печати 24 апреля 2002 г.)

Проведен анализ вклада носителей заряда в модуль упругости 4-го порядка β для кремния *n*- и *p*-типов при одноосном растяжении в направлении [110] в приближении малых деформаций. Концентрационное изменение β измерялось методом спонтанного возбуждения волн Лэмба в изогнутых пластинах разного уровня легирования. По экспериментальным зависимостям определена константа деформационного потенциала зоны проводимости $\Xi_u = 7 \pm 1$ эВ и усредненное значение деформационного потенциала валентной зоны $\sqrt[4]{\Phi^4} = 5.6 \pm 0.8$ эВ при комнатной температуре.

При деформации полупроводниковых кристаллов их симметрия в общем случае понижается. Это приводит к смещению краев энергетических зон полупроводника и к перераспределению носителей заряда [1–4]. Линейное по деформации изменение энергии носителей определяется значением констант деформационного потенциала. Эти константы играют существенную роль в описании кинетических эффектов [1], а также оптоакустических и акустоэлектронных процессов [5]. Однако нахождение их численных значений представляет значительные трудности и зачастую носит оценочный характер.

Данная работа посвящена теоретическому анализу перераспределения носителей заряда в полупроводниках с изоэнергетическими поверхностями, описываемыми многодолинной моделью или же моделью гофрированных сфер [1–4], на примере кремния *n*- и *p*-типов, и экспериментальному определению некоторых констант деформационного потенциала.

Перераспределение электронов при деформации в многодолинной модели

Вклад носителей заряда в свойства слабо легированных полупроводников полностью определяется сравнительно малым числом электронов, переброшенных в зону проводимости, и дырок, образовавшихся в валентной зоне. Поэтому практически все носители оказываются на уровнях вблизи экстремумов соответствующих зон.

Известно [1,2], что минимумы зоны проводимости недеформированного кремния (долины) в пространстве квазиимпульсов при заданной величине энергии имеют вид эллипсоидов вращения и ориентированы вдоль осей (100). В ненапряженном состоянии все долины заселены электронами одинаково. Смещение края зоны при деформации, если отбросить одинаковое для всех долин слагаемое, связанное с изотропным сжатием кристалла, равно [1]

$$\Delta E_c = \frac{1}{3} \Xi_u (2\varepsilon_{11} - \varepsilon_{22} - \varepsilon_{33}), \qquad (1)$$

где Ξ_u — константа деформационного потенциала зоны проводимости, характеризующая влияние одноосной деформации, ε_{ij} — компоненты тензора деформации в системе координат, связанной с главными осями выбранной эллипсоидальной изоэнергетической поверхности.

Рассмотрим перераспределение электронов между шестью потенциальными ямами при растяжении кристалла в направлении [110]. С этой целью введем систему координат x, y, z, связанную с главными кристаллографическими осями, в которой при такой деформации $\varepsilon_{xx} = \varepsilon_{yy}$ и $\Delta E_c^{[100]} = \Delta E_c^{[010]}$. Для неэквивалентных долин соотношение (1) в этой системе координат примет вид

$$E_{c}^{[100]} = \frac{1}{3} \Xi_{u} (\varepsilon_{xx} - \varepsilon_{zz}); \quad E_{c}^{[001]} = -\frac{2}{3} \Xi_{u} (\varepsilon_{xx} - \varepsilon_{zz}).$$
(2)

В невырожденном случае равновесное отношение их населенностей определяется принципом Больцмана [1,2]:

$$\frac{h_{[100]}}{h_{[001]}} = \frac{\exp\left[-(E_c^0 + \Delta E_c^{[100]})/k_{\rm B}T\right]}{\exp\left[-(E_c^0 + \Delta E_c^{[001]})/k_{\rm B}T\right]}$$
$$= \exp\left(-\frac{\Xi_u(\varepsilon_{xx} - \varepsilon_{zz})}{k_{\rm B}T}\right), \tag{3}$$

где E_c^0 — энергия дна долины в недеформированном полупроводнике, $k_{\rm B}$ — постоянная Больцмана, T — температура.

Выразим величину $\varepsilon_{xx} - \varepsilon_{zz}$ через относительное растяжение кристалла по оси [110], равное [3]

$$\varepsilon = \varepsilon_{[110]} - \frac{1}{2} \left(\varepsilon_{[1\bar{1}1]} + \varepsilon_{[\bar{1}12]} \right) = \frac{1}{2} (\varepsilon_{xx} - \varepsilon_{zz}) + \frac{3}{2} \varepsilon_{xy}.$$
(4)

Так как сдвиговая деформация ε_{xy} действует на все долины одинаково (1) и к перераспределению электронов не приводит, имеем

$$\varepsilon_{xx} - \varepsilon_{zz} = 2\varepsilon. \tag{5}$$

[¶] E-mail: scvor@sv.uven.ru

Выражения (3), (5) и закон сохранения числа электронов $n_0 = 4n_{[100]} + 2n_{[001]}$ определяют равновесные населенности долин в деформированном полупроводнике:

$$4n_{[100]} = \frac{2n_0 \exp(-2\Xi_u \varepsilon/k_{\rm B}T)}{2 \exp(-2\Xi_u \varepsilon/k_{\rm B}T) + 1};$$

$$2n_{[001]} = \frac{n_0}{2 \exp(-2\Xi_u \varepsilon/k_{\rm B}T) + 1}.$$
 (6)

Перераспределение носителей заряда при деформации вносит дополнительный вклад в плотность упругой энергии кристалла, равный произведению изменения энергии электронов (2)–(5) на их концентрацию (6):

$$\Delta W = 4n_{[100]} \frac{2\Xi_u \varepsilon}{3} - 2n_{[001]} \frac{4\Xi_u \varepsilon}{3}$$
$$= -\frac{8n_0 \Xi_u^2 \varepsilon^2}{9k_B T} - \frac{8n_0 \Xi_u^3 \varepsilon^3}{27(k_B T)^2} + \frac{16n_0 \Xi_u^4 \varepsilon^4}{81(k_B T)^3}, \quad (7)$$

который можно разложить в ряд по малому параметру *є*.

Для раскрытия смысла слагаемых в (7) запишем нелинейный закон Гука и плотность упругой энергии в виде

$$\sigma = E_0\varepsilon + \alpha\varepsilon^2 + \beta\varepsilon^3; \quad W = \frac{1}{2}E_0\varepsilon^2 + \frac{1}{3}\alpha\varepsilon^3 + \frac{1}{4}\beta\varepsilon^4.$$
(8)

Здесь E_0 — модуль Юнга, α и β — линейные комбинации модулей упругости 3-го и 4-го порядка. Добавление ΔW (7) к W (8), изменяющее коэффициенты при различных степенях ε , определяет влияние носителей заряда на модули упругости в условиях деформации кристалла. При этом независимо от сорта примеси, E_0 и α линейно уменьшаются с ростом концентрации свободных электронов n_0 , а β увеличивается на

$$\Delta\beta = \frac{64n_0\Xi_u^4}{81(k_{\rm B}T)^3}.$$
(9)

Более того, относительное изменение β будет гораздо сильнее, чем изменение модулей низшего порядка. Действительно, величина деформационного потенциала Ξ_u для кремния лежит в интервале от 8.5 до 9.57 эВ [1,4]. Отношения упругих модулей кристаллов оцениваются как [6] $\alpha/E_0 \approx -6$ и $\beta/E_0 \approx 200$. Следовательно, при комнатной температуре в легированном до $n_0 = 10^{17}$ см⁻³ полупроводнике относительные изменения модулей упругости будут иметь порядок

$$\frac{\Delta E_0}{E_0} \approx 5 \cdot 10^{-4}, \quad \frac{\Delta \alpha}{\alpha} \approx 10^{-2}, \quad \frac{\Delta \beta}{\beta} \approx 10^{-1}.$$
 (10)

Поэтому в дальнейших расчетах будем считать модуль Юнга независящим от концентрации носителей заряда.

Следует также подчеркнуть, что модуль α в (8) является коэффициентом при нечетной степени упругой деформации, поэтому знакопеременный вклад этого члена в упругую энергию зависит от знака ε . Например, в случае прогиба "верхняя" половина пластины испытывает сжатие относительно нейтрального слоя $(\alpha \varepsilon^3 < 0)$, а "нижняя" — растяжение $(\alpha \varepsilon^3 > 0)$, так что усреденение по сечению дает нуль. В отличие от этого в слагаемом с участием β любая знакопеременная деформация приводит к одному и тому же изменению W, что и использовалось в работе для определения вклада нелинейных модулей упругости 4-го порядка.

2. Перераспределение дырок при деформации в модели гофрированных сфер

Поверхности постоянной энергии валентной зоны кремния представляют собой гофрированные сферы, которые путем усреднения по различным направлениям волнового вектора *k* можно аппроксимировать сферами [2]

$$E_{v}^{0} = -k^{2} \left(A \pm \sqrt{B^{2} + C^{2}/6} \right), \qquad (11)$$

где A, B, C — постоянные зонной структуры, знаки "+" и "-" соответствуют поверхностям легких и тяжелых дырок. В кремнии основной вклад в упругие свойства вносят тяжелые дырки, количество которых составляет 85% от общего числа [1,2].

В приближении больших энергий, т.е. когда кинетическая энергия носителей заряда $k_{\rm B}T$ значительно превышает расщепление зон при деформации ΔE_v , искажение поверхности тяжелых дырок имеет вид [3]

$$\Delta E_{v} = \frac{1}{2} \left(E_{v}^{0} + Ak^{2} \right) \left\{ Bb \left[3(k_{x}^{2}\varepsilon_{xx} + k_{y}^{2}\varepsilon_{yy} + k_{z}^{2}\varepsilon_{zz}) - k^{2}(\varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz}) \right] + 2Dd \left[k_{x}k_{y}\varepsilon_{xy} + k_{x}k_{z}\varepsilon_{xz} + k_{y}k_{z}\varepsilon_{yz} \right] \right\}.$$
 (12)

Здесь опущено слагаемое, связанное с изотропным сжатием полупроводника; b, d — константы деформационного потенциала валентной зоны, $D^2 = C^2 + 3B^2$.

При растяжении кристалла в направлении [110]

$$\Delta E_v^{[110]} = \frac{1}{2} \left(E_v^0 + Ak^2 \right) \left[Bb(k^2 - 3k_z^2) \right. \\ \left. \times \left(\varepsilon_{xx} - \varepsilon_{zz} \right) + 2Ddk_x k_y \varepsilon_{xy} \right].$$
(13)

Компоненты тензора деформации требуется здесь выразить через относительное удлинение вдоль оси [110], описываемое соотношением (4). Из теории упругости [7] известно, что при растяжении кристалла в этом направлении

$$\frac{(1/2)(\varepsilon_{xx} - \varepsilon_{zz})}{(3/2)\varepsilon_{xy}} = \frac{2c_{44}}{3(c_{11} - c_{12})},$$
(14)

где $c_{11} = 165.7 \Gamma \Pi a$, $c_{12} = 63.9 \Gamma \Pi a$, $c_{44} = 79.6 \Gamma \Pi a$ [8] — значения констант упругой жесткости для кремния. Отношение (14) очень близко к 1/2.

Подставляя (4), (14) и (11) в (13) и переходя в сферическую систему координат пространства квазиимпульсов, получаем, что изменение энергии пропорционально деформации

$$\Delta E_{v}^{[110]} = \frac{\sqrt{2\varepsilon}}{\sqrt{3(3B^{2} + D^{2})}} \Big[Bb(1 - 3\cos^{2}\theta) \\ + \frac{2}{3}Dd\sin^{2}\theta\sin 2\varphi \Big] = \Phi(\varphi, \theta)\varepsilon, \quad (15)$$

поэтому можно ввести деформационный потенциал Ф для зоны тяжелых дырок.

В приближении больших энергий невозможен обмен носителями между поверхностями легких и тяжелых дырок [3], следовательно, носители заряда релаксируют между различными точками одной и той же поверхности. Их число в элементе телесного угла $d\Omega$ пространства квазиимпульсов при отсутствии механических напряжений и изотропном законе дисперсии (11) равно $(p_0/4\pi)d\Omega$, где p_0 — полная концентрация дырок внутри поверхности. Перераспределение дырок в результате деформации определяется распределением Больцмана

$$\frac{dp(\Omega)}{p_0 d\Omega} = \frac{\exp\left((E_v^0 + \Delta E_v^{[110]})/k_{\rm B}T\right)}{\exp(E_v^0/k_{\rm B}T)} = \exp\frac{\Delta E_v^{[110]}}{k_{\rm B}T}.$$
(16)

Интегрирование произведения $dp(\Omega)$ на $\Delta E_v^{[110]}$ по всей поверхности дает нам деформационное изменение упругой энергии

$$\Delta W = \frac{1}{4} p_0 \int_{\Omega} \Delta E_v^{[110]} \exp\left(\frac{\Delta E_v^{[110]}}{k_{\rm B}T}\right) d\Omega.$$
(17)

Разложив экспоненту в (17) в ряд по степеням є и сравнив коэффициент при четвертой степени с (8), получаем приращение модуля упругости 4-го порядка:

$$\Delta\beta = \frac{2p_0}{3(k_{\rm B}T)^3} \frac{1}{4\pi} \int_{\Omega} \Phi^4 d\Omega = \frac{2p_0}{3(k_{\rm B}T)^3} \langle \Phi^4 \rangle.$$
(18)

Интегрирование с учетом (15) дает

$$\begin{split} \langle \Phi^4 \rangle &= \frac{64}{315 \left[(3B/D) + 1 \right]^2} \\ &\times \left[3 \left(\frac{B}{D} \right)^4 b^4 + \frac{4}{9} \left(\frac{B}{D} \right)^2 b^2 d^2 + \frac{16}{243} d^4 \right]. \end{split}$$
(19)

Если деформация производится вдоль оси [100], то значение $\langle \Phi^4 \rangle$ определяется только константой *b*, а если вдоль [111], то только *d*. Появляется возможность экспериментального определения одной из них по концентрационной зависимости β .

Рис. 1. Схема нагружения кристалла.

3. Проведение эксперимента и обсуждение результатов

Экспериментальное определение β осуществлялось методом самовозбуждения продольных колебаний в составном вибраторе, состоящем из монокристаллической кремниевой полосы, упруго изогнутой трехточечным способом (рис. 1), и приклеенных на ее торцах пьезопреобразователей. Методика измерений и аппаратурное оформление эксперимента подробно изложены в работах [6,9].

Исследуемые кремниевые полосы вырезались из монокристаллических пластин¹ *n*- и *p*-типов ориентации (111) в направлении [110], совпадающем с осью *x* на рис. 1. Параметры образцов и полученные данные приведены в табл. 1 и 2.

Изменение резонансной частоты генерации продольной волны f в составном вибраторе [9] зависит от стрелы прогиба кремниевой пластины l как

$$\frac{\Delta f}{f} = \frac{f - f_0}{f} = \frac{6h^2 l^2 \beta}{\xi^3 L E_0},$$
(20)

где f_0 — резонансная частота в системе с недеформированным кристаллом; *L*, *h* — длина и толщина исследуемой пластины, ξ — расстояние между опорами (рис. 1).

На рис. 2 приведены экспериментальные зависимости изменения частоты генерации продольных волн Δf от квадарата стрелы прогиба l^2 . Наблюдаемые различия в углах наклона для легированного и слабо легированного кремния *n*- и *p*-типов связаны с вкладом носителей заряда в модуль упругости 4-го порядка (9), (18). Из (20) видно, что по тангенсам угла наклона этих экспериментальных зависимостей можно определить нелинейный модуль β_L легированных образцов (нижний индекс L)

$$\beta_L = \beta_0 + \Delta\beta = \beta_0 + \frac{E_0 \xi_L^3 L_L}{6f_L h_L^2} \left(\frac{\Delta f}{l^2}\right)_L, \qquad (21)$$

где β_0 — модуль упругости 4-го порядка нелегированного полупроводника.

Модуль Юнга в кремнии для изотропной относительно упругих свойств плоскости (111) равен $E_0 = 169 \Gamma \Pi a$ [10]. С учетом этого по формуле (21)

¹ Использовались бездислокационные пластины кремния, выращенные по методу Чохральского.

Параметры образцов	Образцы				
	1	2	3	4	
Удельное сопротивление, Ом · см	30	0.1	0.05	0.03	
Концентрация носителей n_0 , м ⁻³	$2\cdot 10^{20}$	$9\cdot 10^{22}$	$3\cdot 10^{23}$	$8\cdot 10^{23}$	
Длина L, мм	67	68	66	65	
Ширина w, мм	11	12	14	12	
Толщина <i>h</i> , мкм	330	450	480	500	
Расстояние между опорами ξ , мм	65	65	61	60	
Резонансная частота f_0 , Гц	5253514	5343871	5243273	5578154	
Модуль β_L , Па	$4.9\cdot 10^{13}$	$6.2\cdot10^{13}$	$6.4\cdot10^{13}$	$6.9\cdot10^{13}$	

Таблица 1. Параметры кремниевых пластин *n*-типа, легированных фосфором

Таблица 2. Параметры кремниевых пластин *p*-типа, легированных бором

Параметры образцов	Образцы				
	1	2	3	4	
Удельное сопротивление, Ом · см	3	0.5	0.1	0.05	
Концентрация носителей p_0, M^{-3}	$4\cdot 10^{21}$	$4\cdot 10^{22}$	$5\cdot 10^{23}$	$1\cdot 10^{24}$	
Длина L, мм	68	68	66	60	
Ширина w , мм	10	12	14	12	
Толщина <i>h</i> , мкм	450	450	450	450	
Расстояние между опорами ξ, мм	67	65	60	55	
Резонансная частота f_0 , Гц	7695353	7635351	7832791	7057815	
Модуль β_L , Па	$2.9\cdot 10^{13}$	$3.1\cdot10^{13}$	$3.3\cdot10^{13}$	$3.4\cdot10^{13}$	

Рис. 2. Зависимости резонансной частоты составного вибратора от квадрата стрелы прогиба для кремния: a - n-Si с сопротивлением ρ , Ом · см: 1 - 30, 2 - 0.1, 3 - 0.05, 4 - 0.03; b - p-Si с сопротивлением ρ , Ом · см: 1 - 3, 2 - 0.5, 3 - 0.1, 4 - 0.05.

Рис. 3. Концентрационная зависимость модуля упругости 4-го порядка β кремния при T = 288 К для донорного (1) и акцепторного (2) кремния. N_0 — концентрация носителей заряда.

была рассчитана концентрационная зависимость β_L (см. табл. 2).

С использованием соотношения (9) по тангенсу угла наклона аппроксимирующей прямой на рис. 3 было найдено значение $\beta_0 = (3.8 \pm 0.6) \cdot 10^{13}$ ГПа и константы деформационного потенциала Ξ_u зоны проводимости кремния при температуре T = 288 К. Впервые полученный методом концентрационного ангармонизма результат $\Xi_u = 7 \pm 1$ эВ согласуется с имеющимися литературными данными [1,4].

Выясним теперь применимость приближения больших энергий для дырочного кремния и, следовательно, формулы (18). Кинетическая энергия носителй при комнатной температуре $k_{\rm B}T = 0.026$ эВ, расщепление валентной зоны при деформации (15) имеет порядок $b\varepsilon$, где $b \approx 2$ эВ [4]. Деформация изогнутой пластины в точке с максимальной кривизной, т.е. при x = 0, y = h/2 (рис. 1), в наших экспериментах не превышает $\varepsilon = 0.0003$. Следовательно, $b \varepsilon \approx 0.0006$ эВ значительно меньше кинетической энергии дырок. Поэтому используя (18), можно рассчитать деформационный потенциал зоны тяжелых дырок $\sqrt[4]{\Phi^4} = 5.6 \pm 0.8$ эВ. Эта величина того же порядка, что и приведенные в работах [2,4] значения Φ для Si при растяжении вдоль оси [111].

Предложенная в настоящей работе методика может использоваться для определения других констант деформационного потенциала при надлежащем выборе направления деформирования.

Список литературы

- K. Зеегер. Физика полупроводников (М., Мир, 1977).
 [Пер. с англ.: К. Seeger. Semiconductor physics (Springer Verlag, Wien–N.Y., 1973)].
- [2] Физическая акустика. Т. IV. Применение физической акустики в квантовой физике и физике твердого тела, под ред. У. Мэзона (М., Мир, 1969). [Пер. с англ.: Physical acoustics. Principles and Methods, ed. by W.P. Mason. V. IV: Applications to quantum and solid state physics (Academic Press, N.Y.-London, 1966)].

- [3] Г.Л. Бир, Г.Е. Пикус. Симметрия и деформационные эффекты в полупроводниках (М., Наука, 1972).
- [4] А.Л. Полякова. Деформация полупроводников и полупроводниковых приборов (М., Энергия, 1979).
- [5] В.Э. Гусев, А.А. Карабутов. Лазерная оптоакустика (М., Наука, 1991).
- [6] К.Е. Никитин. ФТТ, 36, 3587 (1994).
- [7] Л.Д. Ландау, Е.М. Лифшиц. *Теория упругости* (М., Наука, 1987).
- [8] Физическая акустика. Т. III, часть Б: Динамика решетки, под ред. У. Мэзона (М., Мир, 1968). [Пер. с англ., Physical acoustics. Principles and Methods, ed. by W.P. Mason. V. III, Part B: Lattice dynamics (Academic Press, N.Y.-London, 1965)].
- [9] А.А. Скворцов, А.М. Орлов, К.Е. Никитин, О.В. Литвиненко. Письма ЖТФ, 21, 82 (2000).
- [10] Ю.А. Концевой, Ю.М. Литвинов, Э.А. Фаттахов. Пластичность и прочность полупроводниковых материалов и структур (М., Радио и связь, 1982).

Редактор Т.А. Полянская

Determination of constants of the potential of deformation of *n*- and *p*-silicon by the concentration anharmonizm

A.A. Skvortsov, O.V. Litvinenko, A.M. Orlov

Ul'yanovsk State University, 432700 Ul'yanovsk, Russia

Abstract The analysis of the contrubution of charge carriers in the module of elasticity of the fourth order β for silicon of *n*- and *p*type under uniaxial tension in a [110] direction in an approximation of small strains is conducted. The concentration modification β was measured by a method of spontaneous excitation of surface waves in curved layers having different levels of doping. By experimental curves the constant potential of the deformation of the conductivity band $\Xi_u = 8.3 \pm 1 \text{ eV}$ and an average value of the deformation potential of the valency band zone $\sqrt[4]{\langle \Phi^4 \rangle} = 9 \pm 1 \text{ eV}$ were found at room temperature.