Получение изотопно-чистых слоев кремния методом молекулярно-пучковой эпитаксии

© О.Н. Годисов, А.К. Калитеевский, А.Ю. Сафронов, В.И. Королев^{*}, Б.Я. Бер[†], В.Ю. Давыдов[†], Д.В. Денисов[†], М.А. Калитеевский[†], П.С. Копьев[†], А.П. Коварский[†], В.М. Устинов[†], Н.-J. Pohl[≠]

ПО "Электромеханический завод", НТЦ "Центробежные технологии",

194021 Санкт-Петербург, Россия

† Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

[≠] VITCON Projectconsult Gmbh,

D-07745 Jena, Germany

(Получена 17 мая 2002 г. Принята к печати 17 мая 2002 г.)

Методом молекулярно-пучковой эпитаксии с твердотельным источником были выращены слои изотопночистого кремния ²⁸Si и ³⁰Si с обогащением 99.93 и 99.34% соответственно. Методами вторичной ионной масс-спектроскопии и рамановского рассеяния света продемонстрированы высокая изотопная чистота и кристаллическое совершенство полученных слоев.

Природный кремний представляет собой смесь трех стабильных изотопов: ²⁸Si (92.23%), ²⁹Si (4.67%) и ²⁹Si (3.10%). Использование кремния с моноизотопным составом может позволить решить ряд существенных технологических проблем, таких как отвод тепла в полупроводниковых приборах [1] и создание высоколегированных подложек *n*-типа с однородным распределением примеси [2]. Изотопные гетероструктуры могут служить основой для создания прототипа квантового компьютера [3]. Недавно были получены слои изотопночистого кремния методами газофазной эпитаксии [4,5] и молекулярно-пучковой эпитаксии (МПЭ) с газовым источником [6]. Данная работа посвящена отработке технологии выращивания слоев изотопно-чистого кремния методом МПЭ с твердотельным источником.

Разделение изотопов кремния осуществлялось по центробежной технологии с использованием тетрафторида кремния [7]. Затем изотопно-обогащенный тетрафторид кремния перерабатывался в силан методом нуклеофильного замещения [7]. Поликристаллический кремний получался путем пиролиза силана и использовался для загрузки источников в установке МПЭ.

Процесс МПЭ проводился в установке "Supra-32" (Riber), ростовая камера которой оснащена тремя электронно-лучевыми испарителями (один из которых рассчитан на три тигля под различные материалы) и четырьмя эффузионными источниками. Аналитическая часть ростовой камеры включает в себя квадрупольный масс-спектрометр, датчик давления Баярда–Альперта и систему дифракции быстрых электронов на отражение (ДБЭО). Установка включает в себя аналитическую камеру, оснащенную апаратурой для оже- (ОЭС) и рентгеновской фотоэлектронной спектроскопии (РФЭС) и системой транспорта исследуемых образцов между камерами без нарушения условий сверхвысокого вакуума. Базовое остаточное давление в ростовой камере

не превышало значения $3 \cdot 10^{-10}$ Торр, и при осаждении эпитаксиальных пленок кремния давление возрастало до значений порядка $1 \cdot 10^{-8}$ Торр.

Структуры выращивались на подложках Si (100) *п*-типа с концентрацией легирующей примеси 2 · 10¹⁵ см⁻³. Предварительная химическая подготовка подложек осуществлялась по методу Шираки [8]. Сразу же по окончании химической подготовки подложки загружались в шлюзовую камеру установки, которая откачивалась до сверхвысокого вакуума. Предэпитаксиальная подготовка подложек в ростовой камере заключалась в ступенчатом обезгаживании при 450 и 750°C и последующей возгонке тонкого (~10-15 Å) защитного слоя оксидов кремния в слабом потоке атомов Si ($\sim 10^{13}$ атомов · см⁻² · с⁻¹) при температуре 750°С. После удаления окисла наблюдалась линейчатая (2 × 2) картина ДБЭО, что является свидетельством получения чистой, атомарно-гладкой поверхности кремния. Отсутствие загрязнений и микронеровностей при такой подготовке подложки было подтверждено также исследованием поверхности контрольных образцов, которое включало в себя РФЭС in situ и сканирующую электронную микроскопию ex situ.

Моноизотопные пленки 28 Si и 30 Si были выращены методом электронно-лучевого испарения материала поликристаллических слитков кремния 28 Si и 30 Si, помещенных в молибденовые тигли трехсекционного электронно-лучевого испарителя. Скорость роста эпитаксиальной пленки составляла 0.2 Å/с, эпитаксиальный рост осуществлялся при температуре подложки 620°С, контролируемой инфракрасным пирометром Ircon-V и стандартной W–Re-термопарой. На рис. 1 представлена типичная картина ДБЭО, наблюдавшаяся в процессе роста. Двумерный характер дифракционной картины и наличие сверхструктурных рефлексов позволяют сделать вывод о двумерном характере эпитаксиального роста

¹⁹⁸⁰⁹⁶ Санкт-Петербург, Россия

^{*} НПО "Радиевый институт им. В.Г. Хлопина",

Рис. 1. Картина ДБЭО, наблюдавшаяся в процессе эпитаксиального роста моноизотопных пленок кремния. Азимут падения электронного пучка [011], энергия электронов в пучке 10 кэВ.

моноизотопного кремния, а также о том, что полученные пленки имеют атомарно-гладкую и атомарно-чистую поверхность.

Распределение концентраций различных изотопов кремния по глубине выращенных слоев исследовалась методом вторично-ионной масс-спектрометрии на вторично-ионном микрозонде САМЕСА IMS4f. Вторичная эмиссия аналитических ионов изотопов Si⁻ возбуждалась бомбардировкой эпитаксиального слоя ионами цезия Cs⁺ с энергией 14.5 кэВ. При этом использовался режим высокого массового разрешения ($M/\Delta M = 3500$), обеспечивавший уверенное отделение аналитических сигналов вторичных ионов Si⁻ от близких по массе кластеров вида SiH⁻.

На рис. 2, *а* представлены профили распределения по толщине пленки концентраций изотопов кремния в слое, обогащенном изотопом ³⁰Si, выращенном на кристаллической подложке кремния с естественным изотопным составом. Толщина слоя 270 нм, а его изотопная чистота ³⁰Si составляла 99.30 ат%. При этом содержание изотопа ²⁹Si уменьшено более чем в 10 раз и составляет 0.52 ат%, а содержание изотопа ²⁸Si уменьшено в 500 раз и составляят 0.18 ат%.

На рис. 2, *b* представлены профили распределения по толщине пленки концентраций изотопов кремния в слое, обогащенном изотопом ²⁸Si, выращенном на кристаллической подложке кремния с естественным изотопным составом (отношение концентраций различных изотопов кремния в подложке соответствует природному кремнию). На рисунке можно увидеть резкую границу между слоем толщиной порядка 370 нм и подложкой. Изотопная чистота слоя ²⁸Si составляет 99.93 ат%. При этом

содержание изотопов 29 Si и 30 Si уменьшено более чем в 100 раз и составляет 0.04 и 0.03 ат% соответственно.

На рис. З представлены рамановские спектры, полученные от изотопно-чистого слоя ²⁸Si и ³⁰Si, а также, для сравнения, спектр монокристаллической подложки с естественным изотопным составом. Рамановские спектры были измерены на автоматизированной

Рис. 2. Профили концентрации изотопов кремния ²⁸Si, ²⁹Si и ³⁰Si в изотопно-обогащенных слоях ³⁰Si (*a*) и ²⁸Si (*b*), выращенных на подложках кремния с естественным изотопным составом. Изотопный состав эпитаксиальных слоев, ат%: $a - {}^{28}$ Si – 0.18, ²⁹Si – 0.52, ³⁰Si – 99.30; $b - {}^{28}$ Si – 99.93, ²⁹Si – 0.04, ³⁰Si – 0.03.

Рис. 3. Спектры рамановского рассеяния света от эпитаксиальных слоев ²⁸Si и ³⁰Si. Спектральная особенность, обозначенная символом "*", соответствует излучению Ne-гейслеровской лампы, используемой для калибровки монохроматора. T = 300 K.

спектральной установке на базе двойного решеточного монохроматора ДФС-24. Спектральная ширина щели составляла 1 см^{-1} . Все спектры были записаны в геометрии рассеяния назад при комнатной температуре. Возбуждение спектров осуществлялось линией 488 нм аргонового лазера, мощность возбуждающего излучения на образце составляла 30 мВт в пятне 50 мкм.

Для кремния с естественным изотопным составом. представляющим собой смесь трех стабильных изотопов с атомными массами 28, 29 и 30 а.е.м. и средней атомной массой 28.086 а.е.м., частота оптического фонона составляет 520.6 см⁻¹, как показано на рис. 3. Зависимость частоты фонона от усредненной массы атомов кристалла должна имень вид $\omega(\mathbf{k}) \propto \bar{M}^{-1/2}$. На спектре, полученном при исследовании эпитаксиального слоя ³⁰Si, можно видеть две линии. Одна из них имеет частоту 520.6 см⁻¹, что соответствует рамановскому рассеянию света в монокристаллической кремниевой подложке с естественным изотопным составом. Другая линия, смещенная в низкочастотную сторону и имеющая частоту 503.8 см^{-1} , соответствует эпитаксиальному слою ³⁰Si. Ширины обеих линий составляют 3.3 см⁻¹, что подтверждает высокое кристаллическое совершенство эпитаксиального слоя. Фононная линия слоя ²⁸Si сдвинута в высокочастотную сторону относительно линии природного кремния и имеет частоту 521.1 см⁻¹. Необходимо отметить, что влияние подложки на наблюдаемый спектр тем меньше, чем больше толщина слоя и частота возбуждающего излучения, что объясняется поглощением света в слое.

Таким образом, методом МПЭ с твердотельным источником получены эпитаксиальные слои изотопно-чистого кремния 28 Si и 30 Si с высокой изотопной чистотой 99.96 и 99.34% соответственно и высоким кристаллическим совершенством.

Авторы выражают благодарность С.А. Смирнову и И.Н. Гончаруку за измерение спектров рамановского рассеяния света.

Работа выполнена при поддержке МНТЦ (проект № 1354), РФФИ (грант № 02-02-17605) и Министерства науки и технологий РФ (проект "Физика твердотельных наноструктур, Методы комплексной диагностики наноструктур").

Список литературы

- T. Ruf, R.W. Henn, M. Asen-Palmer, E. Gmelin, M. Cardona, H.J. Pohl, G.G. Devyatych, P.G. Sennikov. Sol. St. Commun., 115, 243 (2000).
- [2] M.L. Kozhukh. Nucl. Instrum. Meth. Phys. Res. A, 329, 453 (1993).
- [3] B.E. Kane. Nature, **393**, 133 (1998).
- [4] Y. Nakabayashi, T. Segawa, H.I. Osman, K. Saito, S. Matsumoto, J. Murota, K. Wada, T. Abe. Jap. J. Appl. Phys., 39, L1133 (2000).

- [5] H. Bracht, E.E. Haller, R. Clark-Phelps. Phys. Rev. Lett., 81, 393 (1998).
- [6] A. Ural, P.B. Griffin, J.D. Plummer. Appl. Phys. Lett., 73 (12), 1706 (1998).
- [7] О.Н. Годисов, А.К. Калитеевский, В.И. Королев, Б.Я. Бер, В.Ю. Давыдов, М.А. Калитеевский, П.С. Копьев. ФТП, 35 (8), 913 (2001).
- [8] A. Ishizaka, Y. Shiraki. J. Electrochem. Soc., 133, 666 (1986).

Редактор Л.В. Беляков

Silicon isotope-pure layers grown by molecular beam epitaxy

O.N. Godisov, A.K. Kaliteevsky, A.Yu. Safronov, V.I. Korolev^{*}, B.Ya. Ber[†], V.Yu. Davydov[†], D.V. Denisov[†], M.A. Kaliteevski[†], P.S. Kop'ev[†], A.P. Kovarsky[†], V.M. Ustinov[†], H.-J. Pohl[≠]

Science-technical centre "Centrifugal Technologies", 198096 St. Petersburg, Russia * V.G. Khlopin Radium Institute, 194021 St. Petersburg, Russia [†] loffe Physicotechnical Institure, Russian Academy of Sciences, 194021 St. Petersburg, Russia [≠] VITCON Projectconsult Gmbh, D-07745 Jena, Germany

Abstract The layers of isotope-pure silicon ²⁸Si and ³⁰Si (enrichment 99.93% and 99.34%, respectively) were grown by a molecular beam epitaxy method. Secondary-ion spectroscopy and Raman measurements showed high isotope purity and crystal perfection of obtained layers.