Образование преципитатов β -FeSi₂ в микрокристаллическом Si

© Е.И. Теруков, О.И. Коньков, В.Х. Кудоярова[¶], О.Б. Гусев, В.Ю. Давыдов, Г.Н. Мосина

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 2 апреля 2002 г. Принята к печати 11 апреля 2002 г.)

Впервые наблюдалось образование преципитатов β -FeSi₂ в пленках микрокристаллического кремния. Пленки аморфного кремния, легированные железом (*a*-Si \langle Fe \rangle), были получены методом магнетронного распыления. Последующий кратковременный термический отжиг приводил к переходу аморфного кремния в микрокристаллический и образованию преципитатов β -FeSi₂. Показано, что синтезированные образцы излучали на длине волны $\lambda \approx 1.54$ мкм при 100 К.

1. Введение

Одним из направлений кремниевой оптоэлектроники является создание тонкопленочных структур, излучающих в области 1.5 мкм — "окне" прозрачности кремния и двуокиси кремния. Новый подход к решению проблемы связан с синтезом ряда соединений и их кластеров в Si. К таким соединениям следует отнести полупроводниковый дисилицид железа *β*-FeSi₂. Дисилицид железа обладает рядом привлекательных оптических свойств, такими как прямая зона с шириной оптической щели около 0.85 эВ (1.46 мкм), соответствующей длине волны, близкой к 1.5 мкм, и большим коэффициентом оптического поглощения вплоть до 10⁵ см⁻¹. Эти свойства делают его перспективным для изготовления новых оптоэлектронных приборов, чувствительных в ближней инфракрасной области и интегрированных в кремниевую микроэлектронную технологию [1].

Работы по синтезу таких пленок Si интенсивно ведутся последние годы. Основными методами создания включений β-FeSi₂ в Si являются высокодозная имплантация ионов Fe^+ ($D > 1 \cdot 10^{17} \, \mathrm{cm}^{-2}$) и молекулярнолучевая эпитаксия с использованием высокотемпературных (до 900°С) и продолжительных (до 20ч) термообработок [2,3]. Такие термические воздействия нежелательны в микроэлектронике при создании интегральных микросхем, поскольку они приводят к существенной диффузии атомов железа в глубь базового Si из-за большого коэффициента диффузии железа при высоких температурах ($D \approx 5 \cdot 10^{-6} \, \mathrm{cm}^2/\mathrm{c}$ при $T \approx 1000^\circ \mathrm{C}$), что ведет к деградации основных параметров кремниевых приборов [4]. Преодолеть указанные ограничения можно путем использования импульсных лучевых (лазерных, ионных, электронных) обработок, которые воздействуют только на приповерхностные слои материала (~ 1 мкм) в течение короткого времени (< 1 мкс), что исключает нежелательную диффузию примеси железа в базовый материал [5,6]. Известно, что метод магнетронного распыления позволяет получать пленки аморфного кремния, легированные различными металлами. При этом, как и в случае использования имплантации, концентрация легирующей примеси может превосходить предел растворимости. В частности, предел растворимости Fe в кристаллическом кремнии составляет $10^{13} - 5 \cdot 10^{16}$ см⁻³ (при 900–1300°С) [7], Поэтому цель данной работы заключалась в разработке технологии светоизлучающих структур на основе β -FeSi₂ в Si без привлечения дорогостоящей имплантации и продолжительных термообработок.

В данной работе впервые наблюдалось образование преципитатов β -FeSi₂ в пленках микрокристаллического кремния, полученного методом магнетронного сораспыления мишеней Si и Fe в атмосфере Ar. Показано, что синтезированные образцы были способны излучать на длине волны $\lambda \approx 1.54$ мкм при 100 К.

2. Технология изготовления и методы исследования

Пленки аморфного кремния, легированные железом $(a-\text{Si}\langle\text{Fe}\rangle)$, были приготовлены методом магнетронного распыления мишеней из Fe и Si в атмосфере Ar. Последующий термический отжиг в атмосфере Ar при $T = 800^{\circ}\text{C}$ в течение 30 мин переводил пленки из аморфного состояния $(a-\text{Si}\langle\text{Fe}\rangle)$ в микрокристаллическое $(\mu c-\text{Si}\langle\text{Fe}\rangle)$. В этих пленках мы наблюдали образование дисилицида железа β -FeSi₂.

Исследование распределения атомов железа по глубине, определение состава пленок и их толщины проводилось методом резерфордовского обратного рассеяния (Reserford backskattering, RBS). Облучение проводилось пучком дейтронов (²D⁺) с энергией 0.9 МэВ при угле рассеяния 135°. Концентрация введенного Fe изменялась от $1.5 \cdot 10^{20} \, {\rm cm^{-3}}$ до $2.4 \cdot 10^{21} \, {\rm cm^{-3}}$. Толщина пленок составляла $0.4{-}0.5 \, {\rm мкм}$.

Структура образцов исследовалась методом рамановской спектроскопии. Рамановские спектры были получены с использованием автоматической установки на базе спектрометра DFS-24. Все спектры были записаны при 300 К в области $0-600 \text{ см}^{-1}$ с разрешением 3 см⁻¹. В качестве источника возбуждения использовался аргоновый лазер ($\lambda = 514.5 \text{ нм}$).

Более тонкая структура пленок μc -Si $\langle Fe \rangle$ была исследована на электронном просвечивающем микроскопе. Для определения микроструктуры слоев использовался метод просвечивающей электронной микроскопии (ПЭМ) в режиме светлого поля и метод электронной

[¶] E-mail: kudoyarova@mail.ioffe.ru

Рис. 1. Типичные RBS спектры пленок *a*-Si \langle Fe \rangle , полученные методом резерфордовского обратного рассеяния: *1* — до отжига, *2* — после отжига (800°C, 30 мин). Концентрация железа $N_{\text{Fe}} = 10^{21} \text{ см}^{-3}$.

Рис. 2. Рамановские спектры пленок с разной концентрацией железа $N_{\rm Fe}$, см⁻³: $I = 1.1 \cdot 10^{21}$, $2 = 2.1 \cdot 10^{21}$, $3 = 2.4 \cdot 10^{21}$.

микродифракции. Для исследования были приготовлены планарные образцы диаметром 3 мм. Возбуждение сигнала фотолюминесценции (ФЛ) осуществлялось гелийнеоновым лазером ($\lambda = 630$ нм) при мощности 50 мВт, а регистрация ФЛ проводилась с использованием охлаждаемого германиевого детектора (North Coast).

3. Результаты исследований

На рис. 1 приведен RBS-спектр для образцов *a*-Si \langle Fe \rangle до (*I*) и после (*2*) термического отжига (*T* = 800°C, 30 мин). Как видно из рис. 1, кроме Fe, в пленках присутствует Ar (4 ат%) и кислород (5 ат%). Присут-

Рис. 3. Электронно-микроскопический снимок пленки (*a*), сделанный в режиме светлого поля, $N_{\rm Fe} = 2.4 \cdot 10^{21} \, {\rm cm}^{-3}$; *b* — соответствующая микродифракционная картина.

ствие Ar в пленках связано с процессом магнетронного сораспыления мишиней в атмосфере Ar. Появление кислорода в пленках, по-видимому, связано с присутствием кислорода в мишени c-Si. Данные по RBS позволяют сделать два очень важных вывода: во-первых, Fe находится только в пленке и распределено равномерно; во-вторых, короткий по времени термический отжиг не приводит к перераспределению железа в c-Si.

Рамановские спектры образцов после термического отжига ($T = 800^{\circ}$ С, 30 мин) приведены на рис. 2. В спектрах мы наблюдали 4 сильные линии, которые расположены при 195, 247 и 480–520 см⁻¹. Линии 480–520 см⁻¹ принадлежат аморфной и микрокристаллической фазе кремния и соответствуют ТО-фононной моде. Из рис. 2 видно, что спектр в области 400–600 см⁻¹ состоит из двух линий с существенно разной шириной. Широкая линия с центром около 480 см⁻¹ принадлежит аморфной фазе (аморфная связующая ткань, сетка и (или) аморфная поверхность между микрокристаллическими зернами). Узкая линия с центром при ~ 520 см⁻¹ свидетельствует о наличии микрокристаллической фазы кремния.

Что касается линий, расположенных при 196 и 247 см⁻¹, то они обусловлены присутствием β -FeSi₂. β -Фаза дисилицида железа кристаллизуется в орторомбическую пространственную группу D_{2h}^{18} . Для рамановской спектроскопии факторный групповой анализ предсказывает 12 активных внутренних мод, которые, вероятно, дают большинство из 14 рамановских линий [8]. Кроме того, рамановская восприимчивость трех мод A_g не должна изменяться, когда поляризация возбуждающего поля вращается относительно поляризации рассеянного света. Это имеет место в случае трех наиболее интенсивных линий поперечно-поляризованного спектра при 197, 253 и 346 см⁻¹, которые наблюдались в пленке β -FeSi₂ с толщиной 1 мкм, находящейся на подложке FeSi. Линии при 178, 201 и 252 см⁻¹ измерялись для объемного поликристаллического β-FeSi₂. В случае пленки β-FeSi₂ с толщиной 200 нм, которая была выращена на Si-подложке, авторы работ [8,9] наблюдали основные линии при 176, 195/200 и 247 см $^{-1}$. Необходимо заметить, что во всех случаях пик, расположенный при 247 см⁻¹ (A_g мода), был наиболее интенсивным, и по этой причине многие авторы концентрируют свое внимание только на этом пике. Как видно из рис. 2, интенсивность пика при 247 см⁻¹ возрастает с увеличением концентрации Fe, что может быть объяснено увеличением количества синтезируемой фазы β-FeSi₂. Следует также отметить, что увеличение концентрации Fe приводит к уменьшению интенсивности широкой линии около 480 см⁻¹, приписываемой ТО-фононной моде аморфного кремния.

Исследования структуры, проведенные на электронном просвечивающем микроскопе, показали (рис. 3, *a*, *b*), что пленки μc -Si \langle Fe \rangle состоят из шаров нанометрического размера (2-4 нм), которые частично коагулируют, образуя пластины размером до 25 нм (рис. 3, *a*). Шары встроены в матрицу аморфного кремния. Диффракционная картина, полученная с участка слоя на рис. 3, а, приведена на рис. 3, b. На ней присутствуют 3 дисперсных кольца, расшифровка которых показала, что слой состоит из частиц кристаллической фазы. Значения межплоскостных расстояний для пленки, рассчитанные по наблюдаемой микродифракционной картине, в сравнении с соответствующими табличными значениями для β-FeSi₂ и для *c*-Si [10] приведены в таблице. Проведенное сравнение позволило сделать заключение о том, что микрокристаллические включения представ-

Рис. 4. Спектры фотолюминесценции пленок с разной концентрацией железа N_{Fe} , см⁻³: $I = 1.1 \cdot 10^{21}$, $2 = 2.1 \cdot 10^{21}$, $3 = 2.4 \cdot 10^{21}$. T = 100 K.

ляют собой преципитаты фазы β -FeSi₂. Максимальный размер преципитатов составляет 20–25 нм и изменяется незначительно при увеличении концентрации железа. Однако увеличение содержания железа приблизительно в 2 раза от $1.1 \cdot 10^{21}$ до $2.4 \cdot 10^{21}$ см⁻³ приводит к увеличению плотности преципитатов β -FeSi₂ от $6.7 \cdot 10^{10}$ до $2.1 \cdot 10^{11}$ см⁻².

Значения межплоскостных расстояний d для пленки с концентрацией железа $2.4 \cdot 10^{21}$ см⁻³, рассчитанные по микродифракционной картине, в сравнении с табличными значениями, соответствующими β -FeSi₂ и c-Si [10]

Экспериментальные значения	Табличные значения для β -FeSi ₂		Табличные значения для <i>c</i> -Si	
<i>d</i> , Å	<i>d</i> , Å	hkl	<i>d</i> , Å	hkl
3.157			3.13	111
3.08	3.07	202		
2.826	2.851	221		
2.476	2.412	222		
1.988	1.98	313		
1.94	1.95	040	1.92	220
1.83	1.822	204		
1.87	1.867	114		
1.73	1.746	042		
1.629	1.65	224	1.63	311
1.521	1.53	440		
1.358			1.357	400

На рис. 4 приведены спектры фотолюминесценции (ФЛ), наблюдаемые при T = 100 К, в образцах с разной концентрацией железа. Наблюдаются два пика ФЛ, соответствующих ФЛ от подложки Si ($E \approx 1.1$ эB, $\lambda \approx 1.12$ мкм) и от β -FeSi₂ ($E \approx 0.805$ эB, $\lambda \approx 1.54$ мкм). Очевидно, что первый пик ($E \approx 1.1$ эB, $\lambda \approx 1.12$ мкм) связан с непрямыми переходами в запрещенной зоне Si. Второй пик ($E \approx 0.805$ эB, $\lambda \approx 1.54$ мкм) обусловлен прямыми межзонными переходами в пределах зонной щели β -FeSi₂.

Одной из проблем, связанных с эмиссией в области $\lambda \approx 1.54$ мкм в кристаллическом кремнии (*c*-Si), является происхождение сигнала ФЛ. Известно, что дислокации, имеющиеся в кристалле, способны люминесцировать на длине волны $\lambda \approx 1.5$ мкм [11]. В таким случае появляется необходимость отделения вклада в световую эмиссию от дислокаций и от силицида. Поэтому для c-Si(Fe) необходимо иметь доказательства того, что происхождение сигнала $\Phi\Pi$ на $\lambda \approx 1.54$ мкм не связано с эмиссией, обусловленной дислокациями, а возникает благодаря прямым межзонным переходам в оптической щели β-FeSi₂. Обычно таким доказательством является отличие полученного значения энергии термического гашения сигнала ФЛ от данных по термическому гашению для дислокационного центра D1 $(E_a = 7 - 12 \text{ мэВ})$, энергетическое положение которого $(E \approx 0.81 \, \text{sB})$ [11] наиболее близко к положению максимума $\Phi \Pi \ (E \approx 0.805 \, \text{эB}).$

В данной работе β-FeSi₂ был получен в пленках микрокристаллического кремния. Микрокристаллический кремний не содержит дислокаций, и в этом случае мы можем не учитывать вклада дислокаций в ФЛ и связать наблюдаемую ФЛ в области $\lambda \approx 1.54$ мкм с β -FeSi₂. Пик ФЛ от β -FeSi₂ ($E \approx 0.805$ эВ, $\lambda \approx 1.54$ мкм) представляет собой широкую линию. Размытие линии ФЛ может быть связано с разбросом в размерах преципитатов β -FeSi₂. Кроме того, было установлено, что интенсивность ФЛ зависит от концентрации Fe. Исследования микроструктуры показали, что образование фазы β-FeSi₂ наблюдается при концентрациях Fe от $1.5 \cdot 10^{20}$ до $2.5 \cdot 10^{21}$ см⁻³. Увеличение концентрации Fe приводит к незначительному изменению максимального размера преципитатов от 20 до 25 мкм. Более значительное изменение наблюдалось в плотности (количестве) фазы β-FeSi₂. Однако максимальная интенсивность ФЛ при $\lambda \approx 1.54$ мкм наблюдается при концентрации Fe $\approx 1.1 \cdot 10^{21} \,\mathrm{cm}^{-3}$. При концентрациях Fe $\approx 2.4 \cdot 10^{21}$ см⁻³ сигнал ФЛ практически исчезает. При этих концентрациях Fe в рамановских спектрах не наблюдается линии при 480 см⁻¹, приписываемой ТО-фононной моде аморфного кремния. По-видимому, интенсивность $\Phi\Pi$ при $\lambda \approx 1.54$ мкм зависит как от размера преципитатов β -FeSi₂, так и от соотношений объемов, занимаемых фазой β-FeSi2 и аморфной фазой Si.

Следует отметить, что в этом сообщении мы приводим результаты, полученные впервые. Для того чтобы сделать более определенное заключение о механизме $\Phi \Pi$ при $\lambda \approx 1.54$ мкм в микрокристаллическом кремнии, необходимо проведение дополнительных исследований.

4. Заключение

В представленной работе впервые наблюдалось образование дисилицида железа β -FeSi₂ в пленках микрокристаллического кремния, легированного железом. Пленки аморфного кремния, легированного железом, были получены методом магнетронного распыления мишеней кремния и железа в атмосфере аргона. Последующий термический отжиг при $T = 800^{\circ}$ C в течение 20 мин приводил к образованию микрокристаллического кремния и дисилицида железа β -FeSi₂. В таких пленках наблюдалась фотолюминесценция на длине волны $\lambda \approx 1.54$ мкм при температуре 100 К. Была обнаружена зависимость интенсивности фотолюминесценции от концентрации железа, что позволило связать наблюдаемую фотолюминесценцию с преципитатами фазы β -FeSi₂.

Работа выполнена при финансовой поддержке Программы фундаментальных исследований "Низкоразмерные квантовые структуры" (грант № 6.15, 4В19).

Авторы выражают благодарность В.М. Лебедеву за измерения резерфордовского обратного рассеяния.

Список литературы

- [1] M.C. Bost, J.E. Mahan. J. Appl. Phys., 58, 2696 (1985).
- [2] D. Leong, M. Harry, K.J. Reeson, K.P. Homewood. Nature, 387, 686 (1997).
- [3] K. Lefki, P. Muret, N. Cherief, R.S. Cinti. J. Appl. Phys., 69, 352 (1991).
- [4] B.O. Kolbesen, H. Cerva. Phys. St. Sol. (b), 222, 303 (2000).
- [5] Р.И. Баталов, Р.М. Баязитов, Е.И. Теруков, В.Х. Кудоярова, G. Waiser, H. Kuehne. ФТП, 35 (11), 1320 (2001).
- [6] R.I. Batalov, R.M. Bayazitov, I.B. Khaibullin, E.I. Terukov, V.Kh. Kudoyarova. Nanotechnology, 12, 409 (2001).
- [7] B.L. Sharma. *Diffusion in semiconductors*. Trans. Tech. Pub. Germany, 87 (1970).
- [8] K. Lefki, P. Muret, E. Bustarret, N. Boutarek, R. Madar, J. Chevrier, J. Derrien, M. Brunel. Sol. St. Commun., 80, 791 (1991).
- [9] A.G. Birdwell, R. Glosser, D.N. Leong, K.P. Homewood. J. Appl. Phys., 89, 965 (2001).
- [10] JCPDS Powder Diffraction File. Publ. by Int. Centr for Diffraction Data (Swarthmore, USA, 1989).
- [11] Н.А. Дроздов, А.А. Патрин. Письма ЖЭТФ, 23, 800 (1976).
 [Zh. Eksper. Teor. Fiz., Pisma, 23, 651 (1976)].

Редактор Т.А. Полянская

Formation of β -FeSi₂ precipitates in microcrystalline Si films

E.I. Terukov, O.I. Kon'kov, V.Kh. Kudoyarova, O.B. Gusev, V.Yu. Davydov, G.N. Mosina

loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract The formation of β -FeSi₂ precipitates in microcrystalline silicon films has been observed for the first time. Amorphous silicon films doped with Fe (*a*-Si \langle Fe \rangle) have been prepared by magnetron sputtering. Subsequent short-time annealing (800°C, 30 min) results in the transformation of amorphous silicon doped with Fe into microcrystalline one and the production of β -FeSi₂ precipitates. It is shown that the synthesized sample is able to emit at $\lambda \approx 1.54 \,\mu$ m at 100 K.