Зависимость ширины оптической щели кремниевых квантовых точек от их размера

© В.А. Бурдов¶

Нижегородский государственный университет им. Н.И. Лобачевского, 603600 Нижний Новгород, Россия

(Получена 5 сентября 2001 г. Принята к печати 11 марта 2002 г.)

В рамках приближения огибающей получена зависимость ширины оптической щели кремниевых квантовых точек, имплантированных в диэлектрическую матрицу диоксида кремния, от их размера. Показано, что учет конечности ширины запрещенной зоны в SiO₂ и скачка эффективной массы на границе раздела Si/SiO₂ существенно понижает значение оптической щели по сравнению с моделью, в которой потенциальные барьеры для электронов и дырок считаются бесконечно высокими. Установлено хорошее согласие с экспериментальными данными.

Оптические свойства гетероструктур с кремниевыми квантовыми точками малых размеров (в несколько нанометров) активно изучаются с целью получения излучения в ближнем инфракрасном (ИК) диапазоне или даже в видимой части спектра. В связи с этим представляет интерес расчет энергии основного оптического перехода в таких системах и анализ зависимости этой энергии (или частоты) от размера квантовой точки.

Надо сказать, что ранее уже предпринимались попытки подобного расчета с помощью приближения эффективной массы (или кр-метода) [1-3] в модели с бесконечно высокими потенциальными барьерами. Однако многими авторами было подмечено (в том числе и в [3]), что это приближение дает существенно завышенный результат при переходе в область меньших размеров квантовых точек (менее 6-8 нм). В связи с этим для квантовых точек с размерами в несколько нанометров и меньших впоследствии использовались более сложные и мощные методы (которые, однако, уже трудно применять к более крупным квантовым точкам, в том числе из-за резко возрастающих с увеличением размера объемов компьютерных вычислений), такие как модель сильной связи [3-8], метод псевдопотенциала [9-11], приближение локальной плотности [12]. Кроме того, некоторыми авторами указывалось (см., например, [5]), что зависимость ширины оптической щели от радиуса квантовой точки R (для точек сферической формы) не имеет вида R^{-2} , характерного для приближения эффективной массы, а оказывается более плавной (в [5] указывалось на закон $R^{-1.39}$).

В настоящей работе будет рассчитана величина оптической щели кремниевых квантовых точек сферической формы, находящихся в слое плавленного диоксида кремния, с применением **kp**-метода. При этом будет показано, что **kp**-метод может быть использован и в области существенно меньших, чем 6-8 нм, размеров квантовых точек, если учесть более строго, по сравнению с тем, как это было сделано в [1-3], анизотропию закона дисперсии электронов и дырок, а также принять во внимание конечное значение высоты потенциального барьера для

обоих типов носителей (на что уже указывалось в [12]) и скачок величины эффективной массы на границе квантовой точки.

Как показывают расчеты, спин-орбитальное взаимодействие, так же как и в объемном кремнии, оказывает довольно слабое влияние на энергетический спектр, порождая два уровня энергии в валентной зоне, отстоящих друг от друга на 0.04 эВ. Далее мы не будем его учитывать и запишем гамильтониан в приближении огибающей в валентной зоне в виде [13]

$$\hat{H}_{ij}^{(h)} = \delta_{ij} \left(\hat{H}_{0h} + \frac{\hbar^2}{2m_0} \frac{L - M}{3} \left(\hat{\mathbf{k}}^2 - 3\hat{k}_j^2 \right) \right) + (\delta_{ij} - 1) \frac{\hbar^2}{2m_0} N\hat{k}_i \hat{k}_j.$$
(1)

Здесь δ_{ij} — символ Кронеккера, индексы *i* и *j* пробегают значения от 1 до 3, m_0 — масса свободного электрона, а числа *L*, *M*, *N* равны соответственно 6.8, 4.43, 8.61 [14]. Гамильтониан \hat{H}_{0h} представляет собой изотропный оператор, равный

$$\hat{H}_{0h} = -\frac{\hbar^2}{2m_h}\hat{\mathbf{k}}^2,\tag{2}$$

где введена эффективная масса дырки $m_h = 3m_0/(L+2M)$, равная $\sim 0.19m_0$, а значения волнового вектора и энергии отсчитываются от Г-точки.

В зоне проводимости кремния обычно используется модель изоэнергетической поверхности в форме эллипсоида вращения с "продольной" и "поперечной" эффективными массами, получаемая в результате разложения закона дисперсии в окрестности какой-нибудь одной из шести равнозначных точек энергетического минимума. Однако для наших целей эта модель непригодна, поскольку характерные значения энергий размерного квантования в нанокластере при размерах в несколько нанометров заметно превышают разность энергий *X*-точки, в которой происходит пересечение двух ветвей энергиях изоэнергетическая поверхность уже довольно сильно отличается от эллипсоида вращения и

[¶] E-mail: burdov@phys.unn.runnet.ru

в законе дисперсии существенную роль начинает играть непараболичность.

По этой причине, следуя работе [15], запишем гамильтониан в зоне проводимости в виде матричного оператора 2×2 в окрестности одной из трех физически неэквивалентных X-точек зоны Бриллюэна, например соответствующей направлению [0,0,1] (в двух других X-точках гамильтониан записывается аналогичным образом):

$$\hat{H}_{11}^{(e)} = \hat{H}_{22}^{(e)} = \hat{H}_{0e} + \frac{\hbar^2}{6} \left(\frac{1}{m_t} - \frac{1}{m_l}\right) \left(\hat{\mathbf{k}}^2 - 3\hat{k}_z^2\right),$$
$$\hat{H}_{12}^{(e)} = \left(\hat{H}_{21}^{(e)}\right)^{\dagger}$$
$$= \hbar^2 (1/m_t - 1/m_0)\hat{k}_x \hat{k}_y + i\left(\hbar^2 k_0/m_l\right)\hat{k}_z, \quad (3)$$

где m_t и m_l соответственно поперечная и продольная эффективные массы, равные $0.19m_0$ и $0.92m_0$, начало отсчета волнового вектора и энергии находится в X-точке, а гамильтониан \hat{H}_{0e} также является изотропным оператором

$$\hbar \hat{H}_{0e} = \frac{\hbar^2}{2m_e} \hat{\mathbf{k}}^2 \tag{4}$$

с электронной эффективной массой $m_e = 3m_l m_t / (2m_l + m_t)$. Значение $k_0 = 0.144(2\pi/a)$ определяет расстояние в **k**-пространстве от *X*-точки до ближайшего минимума электронной энергии в зоне Бриллюэна, a = 0.543 нм — постоянная решетки. Матричная форма записи оператора Гамильтона в данном случае, так же как и для валентной зоны, является следствием вырождения энергетического спектра в *X*-точки (только теперь вырождение — двукратное для каждой *X*-точки).

Вычисление энергий основных состояний электронов и дырок проведем по теории возмущений, выбрав в качестве основного приближения гамильтонианы (2) и (4) соответственно. Недиагональные элементы операторов (1) и (3), а также анизотропные добавки на главной диагонали будем рассматривать как возмущение. Задача состоит в решении матричного уравнения (для валентной зоны размер матрицы 3×3 , а в зоне проводимости 2×2)

$$\hat{H}_{ij}F_j(\mathbf{r}) = \mathscr{E}F_i(\mathbf{r}),\tag{5}$$

где $F_j(\mathbf{r})$ — огибающие, а \mathscr{E} — энергия. Огибающие функции будем искать в виде разложения по базису собственных функций $|\alpha\rangle$ гамильтониана нулевого приближения (2) или (4) соответственно для дырок или электронов:

$$F_j(\mathbf{r}) = \sum_{\alpha} C_{j\alpha} |\alpha\rangle.$$
 (6)

Здесь греческие буквы обозначают состояния невозмущенной задачи, а латинские — индекс блоховской функции. Подставляя далее разложение (6) в уравнение (5), получаем следующее уравнение для определения энергий \mathscr{E} и коэффициентов разложения C_{ia} :

$$(\mathscr{E} - E_{\beta})C_{i\beta} = \sum_{\alpha} \sum_{j} C_{j\alpha} V_{ij}^{\beta\alpha}, \qquad (7)$$

где E_{β} — собственные значения оператора \hat{H}_{0h} или \hat{H}_{0e} в состоянии $|\beta\rangle$, а $V_{ij}^{\beta\alpha} = \langle \alpha | \hat{V}_{ij} | \beta \rangle$ — матричные элементы оператора возмущения.

Непосредственный расчет показывает, что несмотря на сильную анизотропию электронных и дырочных ветвей энергии, ряды теории возмущений сходятся довольно быстро и уже 1-й порядок дает поправки, значение которых не превышает нескольких процентов. В дальнейшем поправками 2-го порядка будем пренебрегать.

Начнем с вычисления энергии основного состояния дырок в валентной зоне. В нулевом приближении можно получить

$$\mathscr{E}_h = -\frac{\hbar^2 k_h^2}{2m_h},\tag{8}$$

где значение k_h определяется как решение уравнения

$$kR \operatorname{ctg}(kR) = 1 - \frac{m_h}{m^*} - \sqrt{\frac{m_h}{m^*}(w_h^2 - k^2 R^2)},$$
 (9)

параметр $w_h^2 = 2m_h V_h R^2/\hbar^2$, V_k — высота потенциального барьера для дырок в валентной зоне, а m^* — эффективная масса дырок в области потенциального барьера, которая, вообще говоря, отличается от эффективной массы в самой квантовой точке. При выводе (9) использовались условие непрерывности волновой функции на границе и условие непрерывности потока, которое при зависящей от координаты массе сводится к непрерывности отношения $m^{-1}(r)d\Psi/dr$. Сразу заметим, что выражение для энергии (8) и уравнение (9) получаются в нулевом приближении и для электронов зоны проводимости, если заменить в них индекс "h" на индекс "e".

Вычисление поправок к (8) производится стандартным образом с помощью теории возмущений для вырожденных состояний [16], поскольку даже основное состояние в валентной зоне трехкратно вырождено. При этом в правой части уравнения (7) в сумме по α следует оставить только одно основное *s*-состояние. Однако среднее значение оператора возмущения в основном состоянии оказывается равным нулю, т.е. в 1-м порядке поправки к энергии отсутствуют. Поправки 2-го порядка, в формировании которых участвуют *d*-состояния оператора \hat{H}_{0h} , оказываются отличными от нуля, но слишком малыми (об этом уже говорилось выше). Таким образом, для энергии дырок в основном состоянии окончательным является выражение (8).

Основное состояние электронов в зоне проводимости устроено более сложно. Из-за наличия в операторе возмущения линейных по оператору \hat{k}_z слагаемых оказывается возможной гибридизация *s*- и *p*_z-состояний невозмущенной системы (*p*_x- и *p*_y-состояния связываются

между собой, но не связываются с *s*- и p_z -состояниями). По этой причине в уравнении (7) теперь необходимо сохранить в сумме как *s*-, так и p_z -состояния. В результате решения секулярного уравнения получаем дважды вырожденное значение энергии основного состояния (двукратное вырождение в зоне проводимости не снимается, по всей видимости, из-за полной симметрии поверхности постоянной энергии относительно *X*-точки)

$$\mathscr{E}_{e} = \frac{E + E_{1} - V}{2} - \sqrt{\left(\frac{E_{1} - E - V}{2}\right)^{2} + U^{2}},$$
 (10)

где *E* и *E*₁ — энергии *s*- и *p*-состояний, равные

$$E = \frac{\hbar^2 k_e^2}{2m_e}, \quad E_1 = \frac{\hbar^2 k_1^2}{2m_e}, \tag{11}$$

причем значение k_e определяется из уравнения (9), в котором следует заменить везде индекс "h" на индекс "e", о чем уже говорилось выше. Значение k_1 находится из уравнения

$$\frac{(kR)^2}{1-kR\operatorname{ctg}(kR)} = 2(1-m_em^*) - \frac{w_e^2 - (kR)^2}{1+\sqrt{(w_e^2 - k^2R^2)m^*/m_e}}.$$
(12)

Параметры V и U — абсолютные значения диагонального и недиагонального матричных элементов возмущения

$$\frac{\hbar^2}{6} \left(\frac{1}{m_t} - \frac{1}{m_l} \right) \left\langle p_z \left| \hat{\mathbf{k}}^2 - 3\hat{k}_z^2 \right| p_z \right\rangle, \quad i \frac{\hbar^2 k_0}{m_l} \left\langle s \left| \hat{k}_z \right| p_z \right\rangle$$

соответственно. Их значения равны

$$V = \frac{\hbar^2 k_1^2}{6A^2} \left(\frac{1}{m_t} - \frac{1}{m_l} \right) \left[\frac{\sin 2x}{x} - 2(1 + 2x^2/5) j_0^2(x) + \frac{4x}{5} j_0(x) j_1(x) \right] + \frac{\hbar^2 k_1^2}{6A^2} \left(\frac{1}{m_t} - \frac{1}{m_l} \right) j_1^2(x)$$
$$\times \frac{5x^2(c+2) - 4(x^2-6)(c+1)^2 - 9c^3 - 24c^2 - 48c - 24}{5(c+1)^2}$$

$$U = \frac{2\hbar^2 k_0}{\sqrt{3}m_l RA}$$

× $\frac{zx^2(c+b)(c+1)[j_0(x)\cos z - j_0(z)\cos x] - c^2xj_1(x)}{(c+b)(c+1)\sqrt{1+\sin^2 z - j_0(2z)}},$

где $j_0(t)$ и $j_1(t)$ — сферические функции Бесселя первого рода аргумента t,

$$\begin{aligned} x &= k_1 R, \quad z = k_e R, \\ c &= \sqrt{\frac{m^*}{m_e}(w_e^2 - x^2)}, \quad b = \sqrt{\frac{m^*}{m_e}(w_e^2 - z^2)}, \\ A^2 &= 1 + j_0(2x) - 2j_0^2(x) + \frac{c+2}{(c+1)^2}x^2j_1^2(x) \end{aligned}$$

Зависимость ширины оптической щели от обратного радиуса квантовой точки: сплошная кривая — бесконечно высокие потенциальные барьеры; 1 — конечные потенциальные барьеры (3.2 эВ для электронов и 4.3 эВ для дырок) и постоянная эффективная масса; 2 — конечные потенциальные барьеры (3.2 эВ для электронов и 4.3 эВ для дырок) и скачок эффективной массы.

Записать в явном виде зависимость $\mathscr{E}_e(R)$, как впрочем и зависимость $\mathscr{E}_h(R)$, не удается из-за трансцендентного характера уравнений (9) и (12). Однако численное решение (9) и (12) при различных значениях радиуса квантовой точки не представляет особого труда, что позволяет рассчитать уже и зависимость ширины оптической щели от R

$$\mathscr{E}_{g}(R) = \Delta_{\Gamma X} + \mathscr{E}_{e}(R) - \mathscr{E}_{h}(R), \qquad (13)$$

где $\Delta_{\Gamma X} = 1.215$ эВ (по данным, приведенным в [15]) — разность энергий *X*-точки зоны проводимости и Г-точки валентной зоны.

Зависимость \mathscr{E}_g от обратного радиуса квантовой точки представлена на рисунке. Сплошной линией показана зависимость $\mathscr{E}_g(R)$ для модели с бесконечно высокими барьерами V_e и V_h , точки 1 соответствуют модели с конечной высотой барьеров и эффективной массей в области барьера m^* , равной эффективной массе носителя в полупроводнике, т. е. m_e для электронов и m_h для дырок. Точками 2 показаны значения $\mathscr{E}_g(R)$ в случае конечной высоты барьеров и m^* , равной массе свободного электрона m_0 (что, по-видимому, не далеко от истины). Ширина запрещенной зоны в плавленном SiO₂ составляет 8.7 эВ. При этом высота потенциального барьера для электронов по данным, приведенным в [17], равна 3.2 эВ; следовательно, на долю дырок остается (за вычетом значения $\Delta_{\Gamma X}$) барьер высотой 4.3 эВ.

Следует подчеркнуть, что даже в приближении бесконечно высокого барьера зависимость ширины щели от R не будет иметь вида const + R^{-2} из-за гибриди-

В.А. Бурдов

зации *s*- и *p*-состояний. В этом случае, как несложно показать, энергии E, E_1 и матричный элемент V будут зависеть от R^{-1} квадратично, а матричный элемент U будет пропорционален R^{-1} , что в соответствии с (10) и даст некоторую промежуточную между R^{-1} и R^{-2} зависимость для ширины оптической щели.

Вообще говоря, потенциальные барьеры как для электронов, так и для дырок — достаточно высокие и на порядок превышают сами значения энергий \mathscr{E}_e и \mathscr{E}_h . Однако, как видно из рисунка, даже такие высокие барьеры не могут с достаточной степенью точности считаться бесконечно высокими: отличие энергий электронов и дырок от их же значений в случае бесконечно высокого барьера составляет в зависимости от R от 15 до 65%. Особенно сильным влияние барьера становится, естественно, в области меньших размеров — как точки I, так и точки 2 все более отклоняются от почти параболической (по R^{-1}) зависимости, увеличивая величину поправки (включаются слагаемые R^{-3} и более высокие степени).

Также сильно влияет на положение уровней энергии электронов и дырок скачок эффективной массы на границе квантовой точки. Как видно из рисунка, величина поправки в случае $m^* = m_0$ при всех значениях радиуса квантовой точки оказывается примерно вдвое больше, чем в случае постоянной эффективной массы.

Сравнение результатов данной работы с расчетами, выполненными другими более сложными методами, в области размеров квантовых точек, больших 1.5 нм, показывает очень хорошее согласие. Так, результаты расчетов ширины оптической щели, выполненных по методу сильной связи в работах [4,5,8], по методу псевдопотенциала [11] и в приближении функционала локальной плотности [12], практически полностью совпадают со значениями $\mathscr{E}_g(R)$ нашей работы при $m^* = m_0$. Данные работ [6] (метод сильной связи) и [10] (метод псевдопотенциала) отличаются от наших примерно на 10–15%, но в разные стороны: вычисления по методу сильной связи [6] дают более низкие значения ширины щели, а по методу псевдопотенциала [10] — более высокие.

Экспериментальные данные, приведенные в работах [5,6,10,18–21], также неплохо согласуются с нашими расчетами. Практически полное совпадение имеет место с данными работ [5,10,18], где сообщается о результатах экспериментов по люминесценции [5,18] и оптическому поглощению [10]. Работы [6,19–21] по люминесценции в нанокристаллах кремния дают несколько меньшие значения ширины оптической щели (в целом на 10–20%) по сравнению с нашими. Наблюдающийся разброс в экспериментальных данных может быть вызван разными способами "приготовления" квантовых точек, что вряд ли может быть учтено в теоретической модели.

Таким образом, даже при достаточно малых размерах квантовых точек приближение огибающей дает хорошее согласие как с экспериментом, так и с другими расчетными методами, выгодно отличаясь от них тем, что не требует таких больших объемов компьютерных вычислений и является по существу аналитическим методом.

Работа была поддержана РФФИ (грант № 00-02-17488).

Список литературы

- [1] T. Takagahara, K. Takeda. Phys. Rev. B, 46, 15578 (1992).
- [2] J.B. Khurgin, E.W. Forsythe, G.S. Tompa, B.A. Khan. Appl. Phys. Lett., 69, 1241 (1996).
- [3] Y.M. Niquet, C. Delerue, G. Allan, M. Lannoo. Phys. Rev. B, 62, 5109 (2000).
- [4] S.Y. Ren, J.D. Dow. Phys. Rev. B, 45, 6492 (1992).
- [5] C. Delerue, G. Allan, M. Lannoo. Phys. Rev. B, 48, 11024 (1993).
- [6] N.A. Hill, K.B. Whaley. Phys. Rev. Lett., 75, 1130 (1995).
- [7] K. Leung, K.B. Whaley. Phys. Rev. B, 56, 7455 (1997).
- [8] C. Delerue, M. Lannoo, G. Allan. Phys. Rev. Lett., 84, 2457 (2000).
- [9] L.-W. Wang, A. Zunger. J. Chem. Phys., 100, 2394 (1994).
- [10] S. Ogut, J.R. Chelikowsky. Phys. Rev. Lett., 79, 1770 (1997).
- [11] A. Franceschetti, A. Zunger. Phys. Rev. B, 62, 2614 (2000).
- [12] B. Delley, E.F. Steigmeier. Appl. Phys. Lett., 67, 2370 (1995).
- [13] А.И. Ансельм. Введение в теорию полупроводников (М., Наука, 1978).
- [14] M. Voos, Ph. Uzan, C. Delalande, G. Bastard, A. Halimaoui. Appl. Phys. Lett., 61, 1213 (1992).
- [15] А.А. Копылов. ФТП, 16, 2141 (1982).
- [16] Л.Д. Ландау, Е.М. Лифшиц. Квантовая механика (М., Наука, 1989).
- [17] D. Babic, R. Tsu, R.F. Greene. Phys. Rev. B, 45, 14150 (1992).
- [18] A. Mimura, M. Fujii, S. Hayashi, D. Kovalev, F. Koch. Phys. Rev. B, 62, 12625 (2000).
- [19] T. van Buuren, L.N. Dinh, L.L. Chase, W.J. Siekhaus, I.J. Terminello. Phys. Rev. Lett., 80, 3803 (1998).
- [20] S. Takeoka, M. Fujii, S. Hayashi. Phys. Rev. B, 62, 16820 (2000).
- [21] S. Guha, B. Quadri, R.G. Musket, M.A. Wall, T. Shimizu-Iwayama. J. Appl. Phys., 88, 3954 (2000).

Редактор Л.В. Шаронова

Size dependence of the optical gap for silicon quantum dots

V.A. Burdov

Nizhny Novgorod State University, 603600 Nizhny Novgorod, Russia

Abstract The size dependence of the optical gap for silicon quantum dots implanted in a dielectric silicon dioxide matrix is obtained within the framework of the envelope function approximation. It is shown that the consideration of SiO_2 finite band gap and the change of the effective mass at the Si/SiO_2 boundary significantly reduce the optical gap value in comparison with the model of infinite barriers for electrons and holes. A good agreement with the experimental data is established.