Исследование внутреннего трения и эффективного модуля сдвига монокристаллического кремния на начальных стадиях преципитации кислорода

© В.В. Моцкин, А.В. Олейнич-Лысюк[¶], Н.Д. Раранский, И.М. Фодчук

Черновицкий национальный университет, 58012 Черновцы, Украина

(Получена 28 января 2002 г. Принята к печати 13 февраля 2002 г.)

Исследовано изменение температурных спектров внутреннего трения и эффективного модуля сдвига в монокристаллическом кремнии в интервале 20–400°С в зависимости от времени отжига при 400°С. Показано, что в процессе отжига в спектрах поглощения появляются и увеличиваются, по мере выдержки, устойчивые максимумы, обусловленные миграцией точечных дефектов и их комплексов. Высказано предположение о возможной природе обнаруженных эффектов.

Проблеме поведения крислорода в кристаллах кремния посвящено немало работ [1,2]. В них установлено, в частости, что отжиг при температурах 350–400°С в течение времени до 100 ч приводит к выделению кислорода и появлению кислородосодержащих термодоноров первого типа (ТД-1) девяти различных видов, число и концентрация которых зависит от продолжительности термообработки [3]. Тем не менее природа последних до настоящего времени окончательно не установлена. Не существует единого мнения о механизме формирования этих образований, о кинетике этого процесса, о влиянии собственных дефектов кремния на дефекты ТД-1 и многое другое [2].

Поэтому в настоящей работе была предпринята попытка исследовать начальные стадии выделения кислорода в Si методом низкочастотного внутренного трения (BT), обладающего, как известно [4], высокой структурной чувствительностью, позволяющей изучать кинетику выделений на самых ранних стадиях и получать иногда уникальную информацию о движении и взаимодействии дефектов.

В качестве объекта исследований были выбраны монокристаллы Si, выращенные методом Чохральского в направлении $\langle 111 \rangle$, из которых были вырезаны образцы в форме параллелепипедов размерами $1.4 \times 1.4 \times (60-80)$ мм³, перпендикулярно направлению роста. Для снятия поврежденного при нарезании слоя приготовленные образцы были подвергнуты химическому травлению на глубину от 40 до 60 мкм и полированию.

Температурные спектры поглощения упругой энергии измеряли на низкочастотном полуавтоматическом релаксометре типа "обратный крутильный маятник" на частотах $f \approx 1$ Гц по известной методике [5] в интервале температур 20–400°С и деформации $\gamma = (1.2-2.3) \cdot 10^{-5}$. Параллельно измерениям величины ВТ (Q^{-1}) фиксировалось изменение с температурой эффективного модуля сдвига (G_{eff}). Средние скорости изменения температуры как при нагревании, так и при охлаждении составляли ~ 3 град/мин. Относительные погрешности изменений величины ВТ, попорционального G_{eff} , и квадрата частоты (f^2) не превышали 1% для Q^{-1} и 0.1% для f^2 .

На рис. 1 представлены температурные зависимости Q^{-1} и f^2 для образцов в исходном состоянии. Как видим, спектр поглощения упругой энергии в исследуемом интервале температур представлен серией незначительных максимумов в районе 125, 180, 210, 240, 275. 300 и 390°С высотой (5-10) · 10⁻⁴ относительных единиц трения (см. рис. 1, кривая 1 и таблицу). Выдержка при 400°C в течение получаса приводит к незначительному росту эффектов в районе 150-240°С и возникновению на кривых $f^2(T)$ температурного гистерезиса, указывающего на структурную перестройку материала в процессе отжига (см. рис. 2, кривые 3, 4). Спектры поглощения упругой энергии были разделены по известной методике [6], энергии активации релаксационных процессов рассчитаны по формуле Верта-Маркса: $H = RT_{\max} \ln \frac{kT_{\max}}{\hbar \omega_{\max}}$, где T_{\max} — температура максимума, $\omega_{\max} = 2\pi f_{\max}$, R — универсальая газовая постоянная, *k* — постоянная Больцмана.

Дополнительный отжиг в течение получаса при 400°С приводит к более существенным изменениям в спектре Q^{-1} при нагреве (см. рис. 2, кривая *I*) и некоторому увеличению максимумов в районе 200–300°С при охлаждении. При этом температурный гистерезис на температурной зависимости f^2 значительно усиливается.

Выдержка образцов при 400°С при времени более 2 ч формирует в спектрах поглощения хорошо воспроизводимые устойчивые максимумы в спектрах Q^{-1} выше 200°С, которые проявляются как при нагреве, так и при охлаждении (рис. 3, 4). Следует заметить, что интенсивность максимума в районе 280°С при нагреве на порядок выше, чем при охлаждении (76 · 10⁻⁴ и 6 · 10⁻⁴ отн. ед. Q^{-1} соответственно). Пик при 380°С ведет себя обратным образом: высота максимума при нагревании (13 · 10⁻⁴ отн. ед. Q^{-1}) в 5.5 раза меньше, чем при охлаждении (72 · 10⁻⁴). При этом температурный гистерезис на температурной зависимости f^2 становится "двухлепестковым" (см., например, рис. 3, кривые 3, 4).

[¶] E-mail: Ptkachuk@chnu.cv.ua

Рис. 1. Температурные зависимости величины внутреннего трения $Q^{-1}(1,2)$ и $f^2(3,4)$ для образца в исходном состоянии. Кривые *1*, *3* измерены при нагреве; *2*, *4* — при охлаждении.

Рис. 2. То же, что на рис. 1, после отжига образца в течение 0.5 ч при температуре $T_{ann} = 400^{\circ}$ С.

Детальный анализ изменения температурных спектров поглощения упругой энергии при нагревании и охлаждении в зависимости от времени отжига (t_{ann}) при 400°С показывает, что средняя интенсивность пиков растет с величиной t_{ann} , причем по-разному. Так, пик в районе 280°С при нагреве образца увеличивается практически в 6 раз, а пик при 330°С — только вдвое. Пик же при 210°С почти не изменяет свою высоту (рис. 5).

Совместный анализ полученных нами результатов с данными, представленными в [7], позволяет высказать

некоторые предположения о возможной природе обнаруженных максимумов. Действительно, зависимость высоты пиков ВТ от t_{ann} напоминает зависимость концентрации термодоноров первых пяти видов от времени отжига при 400°С [7]. Напомним, что согласно [7], отжиг при 400°С в течение первых 2-х часов приводит к формированию первых 4-х видов ТД-1 (*A*, *B*, *C*, *D*), а (ТД-1)_{*E*} появляется после отжига в течение 5 ч. Относительная концентрация доноров каждого вида изменяется с ростом времени t_{ann} по-разному: концентрация

Рис. 3. То же, что на рис. 1, после отжига образца в течение 4 ч при 400°С.

Рис. 4. То же, что на рис. 1, после отжига образца в течение 5 ч при 400°С.

 $(TД-1)_A$ практически не изменяется, $(TД-1)_B$ — слабо растет; концентрации $(TД-1)_C$ и $(TД-1)_D$ изменяются в несколько раз.

Анализ реласационных параметров обнаруженных нами максимумов (энергии активации H и частотного фактора v_m) (см. таблицу) свидетельствует о том, что практически все обнаруженные пики обусловлены миграцией точечных дефектов или их комплексов [6], поскольку значения v_m лежат в пределах (0.64–0.87) $\cdot 10^{14}$ с⁻¹. Это позволяет предположить, что релаксационные максимумы в высокотемпературной части спектров ВТ связаны с появлением и миграцией в решетке стареющего кремния дефектов ТД-1 разного вида (при этом под миграцией подразумевается любой элементарный диффузионый акт, например поворот ассиметричного термодонора в поле приложенных внешних напряжений). Тогда высота этих максимумов будет определяться количеством образующихся доноров. Следовательно, звисимость $Q_{\rm max}^{-1}$ от времени отжига $t_{\rm ann}$ будет аналогичной зависимости концентрации доноров от $t_{\rm ann}$. Поэтому мы предположили, что максимум в районе 210°C связан с миграцией (ТД-1)_A в структуре Si, пик в районе 280°C — с миграцией (ТД-1)_C, 380°C — (ТД-1)_D, 330°C — (ТД-1)_B. Своеобразным подтверждением предположения о том,

Π	араметр	ЭЫ	релаксационных	максимумов

	Н	агрев		Охлаждение			
t _{ann} ,	T_{\max} ,	Н,	ν_m ,	t _{ann} ,	T_{\max} ,	Н,	ν_m ,
Ч	°C	эВ	$10^{14}c^{-1}$	ч	°C	эВ	$10^{14} c^{-1}$
0.5	125	1.00	-	0.5	120	0.99	-
	180	1.15	_		150	1.07	—
	210	1.23	0.64		180	1.15	-
	240	1.31	0.68		215	1.24	0.64
	275	1.40	0.72		240	1.31	0.68
	300	1.46	0.75		270	1.39	0.71
	390	1.70	0.87		310	1.49	0.76
					380	1.68	0.86
1	110	0.97	_	1	120	0.99	_
	160	1.10	_		160	1.10	_
	210	1.22	0.63		205	1.21	0.63
	280	1.41	0.72		240	1.31	0.67
	330	1.54	0.79		280	1.41	0.73
	390	1.68	0.87		350	1.60	0.82
2	140	1.04	_	2	120	0.99	_
	220	1.25	0.64		160	1.10	_
	290	1.44	0.73		200	1.21	0.63
	370	1.65	0.85		250	1.33	0.68
					305	1.48	0.76
					380	1.68	0.87
3	120	0.99	_	3	110	0.97	_
	170	1.12	_		150	1.07	_
	215	1.24	0.64		180	1.15	_
	280	1.41	0.72		215	1.24	0.64
	330	1.55	0.79		250	1.33	0.69
	380	1.68	0.86		290	1.44	0.88
					340	1.57	0.78
					380	1.68	0.87
4	140	1.04	_	4	135	1.03	_
	210	1.23	0.63		170	1.12	—
	250	1.33	0.69		200	1.28	0.64
	285	1.43	0.73		240	1.31	0.68
	325	1.53	0.79		270	1.39	0.71
	370	1.65	0.86		305	1.48	0.76
					380	1.68	0.86

что миграция каждого вида термдоноров вызывает свой максимум, могут служить результаты, полученные нами в последующих экспериментах, — отжиг при 400°С в течение 5 ч приводит к появлению в спектре ВТ дополнительного максимума в районе 360° С (при охлаждении), который может быть связан с донорами (ТД-1)_E (рис. 4).

Для выяснения природы максимума в районе $240-250^{\circ}$ С будем считать, вслед за авторами [2], что формирование каждого последующего вида ТД-1 происходит путем присоединения одного атома кислорода к комплексу SiO_x, который поставляется при помощи подвижных структурных единиц (ПСЕ). Исследование природы ПСЕ, проведенное, например, в [8], показало, что концентрация ПСЕ прямо пропорциональна концентрации растворенного кислорода. Это позволило авторам [8] сделать вывод о том, что ПСЕ содержит только один атом кислорода и не является квазимолекулой О2. По-видимому, ПСЕ — это комплекс типа кислород-вакансия (О-V), либо (межузельный атом кремния)-кислород (Si-O). Для проверки возможного участия собственных дефектов (вакансий и межузельных атомов) в образовании термодоноров авторы [8] исследовали кремний, облученный быстрыми электронами (E = 4 МэВ, $\Phi_e = 2.4 \cdot 10^{16}$ эл/см²) при 427°С. После такого облучения термодоноров образовывалось меньше, на основании чего авторы сделали вывод о том, что ПСЕ — это не комплексы V-O или Si-O, а межузельный метастабильный кислород О_i, не связанный с решеткой, который обладает повышенной диффузионной подвижностью с энергией активации 1.8 эВ. Относительно возможной природы ПСЕ отметим только, что предварительные исследования, проведенные нами на кремнии, облученном высокоэнергетическими электронами (~ 18 МэВ, разными дозами), показали, что интенсивность образования ТД-1 в облученном монокристаллическом кремнии, выращенном мо методу Чохральского, неоднозначно зависит от дозы облучения. Малые дозы могут стимулировать этот процесс, а большие, наоборот, подавлять. По-видимому, вопрос о природе ПСЕ все еще остается открытым. Поэтому дальнейший анализ высокотемператуной части спектра поглощения упругой энергии в стареющем кремнии мы проводили основываясь только на данных экспериментов по BT: характеристики максимума при 240-250°С (энергия активации H = 1.3 эВ, время релаксации $\tau = 1.45 \cdot 10^{-14}$ с) свидетельствуют в пользу предположения о том, что он связан с миграцией дефектов точечного типа (одиночных или их комплексов) на расстояния порядка межатомных. Причем энергия активации этой миграции указывает на комплексы типа V-О [9,10].

Таким образом, сложный процес формирования термодоноров ТД-1 в Si в процессе старения при 400°C проявляется в спектре поглощения упругой энергии в виде отдельных максимумов, обусловленных мигра-

Рис. 5. Кинетические зависимости Q_{max}^{-1} при различных температурах. *T*, °C: *1* — 210, *2* — 280, *3* — 330, *4* — 380; t_{ann} — время отжига.

Физика и техника полупроводников, 2002, том 36, вып. 9

цией термодоноров 1-го типа пяти различных видов $(TД-1)_A$, $(TД-1)_B$, $(TД-1)_C$, $(TД-1)_D$, $(TД-1)_E$ и подвижных структурных единиц (ПСЕ) в решетке кремния. Однако вопросы о механизме поглощения для каждого из указанных максимумов и о природе ТД-1 и ПСЕ требуют дальнейших исследований.

Список литературы

- [1] К. Рейвик. Дефекты и примеси в полупроводниковом кремнии (М., Мир, 1984).
- [2] В.М. Бабич, Н.И. Блецкан, Е.Ф. Венгер. Кислород в монокристаллах кремния (Київ Інтерпрес ЛТД, 1997).
- [3] U. Goselle, T.Y. Appl. Phys. A, 28 (1), 79 (1982).
- [4] Метод внутреннего трения в металловедческих исследованиях. Справочник (под ред. М.С. Блантера, Ю.В. Пигузова). (М., Металлургия, 1991).
- [5] И.А. Варус, Б.Г. Стронгин. В кн.: Демпфирующие металлические материалы (Киров, КПИ, 1988) с. 96.
- [6] В.С. Постников. Внутреннее трение в металлах (М., Металлургия, 1974).
- [7] B.Pajot, H.Compain, J. Lerouille, B. Clerjaud. Physica B+C, 117–118, 110 (1983).
- [8] Л.И. Мурин, В.П. Маркевич. ФТП, 22 (7), 1324 (1988).
- [9] И.Д. Козоненко, А.К. Семенюк, В.И. Хиврич. Радиационные эффекты в кремнии (Киев, Наук. думка, 1974).
- [10] Л.Н. Александров, М.И. Зотов, Б.П. Сурин. В сб.: Физика и химия конденсированных сред (Воронеж, ВПИ, 1981) с. 14.

Редактор Т.А. Полянская

Investigation of internal friction and effective shear modulus of a silicon single crystal on during early stages of oxygen precipitation

V.V. Motskin, A.V. Oleynich-Lisyuck, N.D. Raranskiy, I.M. Fodchuk

Chernovtsy National University, 58012 Chernovtsy, Ukraine