## Фотопроводимость крупнозернистых поликристаллов CdTe

© С.А. Медведев, Ю.В. Клевков, С.А. Колосов, В.С. Кривобок, А.Ф. Плотников

Физический институт им. П.Н. Лебедева Российской академии наук, 117924 Москва, Россия

(Получена 30 января 2002 г. Принята к печати 13 февраля 2002 г.)

Исследованы спектры фотопроводимости текстурированных крупнозернистых поликристаллов CdTe, синтезированных при низких температурах из глубокоочищенных компонентов. Показано, что фотопроводимость определяется сложными комплексами, состоящими из протяженных дефектов и захваченных на них атомов примесей.

#### 1. Введение

Широкое применение поликристаллических полупроводников в микроэлектронике в течение долгого времени было сильно ограничено тем, что в этих полупроводниках всегда существовало множество протяженных дефектов, таких как границы зерен и дислокации. Известно, что такие дефекты ответственны не только за значительное уменьшение подвижности основных и времени жизни неосновных носителей заряда, но в процессе роста кристалла могут являться и центрами образования вторичных фаз и сегрегации примесей. В настоящее время изученность этих систем возросла настолько, что их поликристалличность является скорее не проблемой, а надеждой на будущее [1].

Сейчас уже понятно, что существенного изменения свойств этих материалов можно добиться путем изменения размеров зерен, ориентации межзеренных границ, контролируемым легированием, что в процессе роста может приводить либо к отклонениям от стехиометрии, либо к изменениям механизма сегрегации примесей [2]. Однако получение точных знаний о локальном беспорядке как в элементарных полупроводниках, так и в соединениях остается открытой проблемой, поскольку неупорядоченное скопление примесей или точечных дефектов в какой-то области кристалла трудно отличить от протяженных дефектов. К счастью, как правило, протяженные дефекты являются источниками возникающих вблизи них электрических полей и полей упругих напряжений, что существенно отличает их электронные состояния от электронных состояний локального скопления примесей. Существенно упрощает задачу и исследование кристаллов с малым содержанием примесей.

Электронные состояния протяженных дефектов, в основном в кремнии, экспериментально изучались методами фотолюминесценции, оптического поглощения, двойного спинового резонанса, высокочастотной проводимости, фотопроводимости [3,4]. В настоящей работе мы сообщаем результаты исследований стационарной фотопроводимости и ее кинетики в крупнозернистых текстурированных поликристаллах CdTe, выращенных по новой технологии [5].

Следует отметить, что среди различных методов исследования физических свойств полупроводников далеко не последнее место занимает фотопроводимость, поскольку этот метод позволяет определять не только энергетическое положение уровней локальных дефектов, но и исследовать времена жизни и подвижности неравновесных носителей заряда в полупроводниках с умеренным содержанием примесей ( $\sim 10^{15} - 10^{16}$  см<sup>-3</sup>) [6].

К сожалению, в кристаллах с набором различного рода протяженных дефектов (дислокаций, границ зерен) интерпретация спектров фотопроводимости существенно усложняется: в спектрах таких кристаллов, как правило, наблюдается смещение края сигнала собственной фотопроводимости в длинноволновую область [7]. Это указывает на присутствие в кристаллах локальных деформационных полей напряжений сжатия и растяжения, которые могут существенно изменять спектр глубоких электронных состояний в запрещенной зоне, причем локальное распределение деформационных полей напряжений в кристаллах неоднородно. В этих условиях важными параметрами в определении качества материала могут являться времена жизни и подвижности носителей заряда, которые достаточно надежно определяются из измерений стационарной фотопроводимости и ее кинетики.

#### 2. Экспериментальная часть

Для измерений использовались высокочистые поликристаллические образцы *p*-CdTe (удельное сопротивление  $10^5 - 10^6$  OM · см) стехиометрического состава, имеющие текстурированную структуру с направлением роста монокристаллического зерна [111]. Средний размер монокристаллического зерна составлял не менее 1.5-2 мм в диаметре. Образцы были изготовлены из поликристаллических слитков, выращенных при температурах 600-620°C в процессе финишной очистки CdTe. Образцы размерами  $5 \times 5 \times 1.5$  мм<sup>3</sup> приготавливались с помощью механической шлифовки и полировки поверхности {111} поперек направления роста.

Контакты на поверхностях {111} наносили после травления образцов в бром-метаноловом растворе методом осаждения золота из раствора хлорного золота.

Фотопроводимость измерялась при 65 К в области края собственного поглощения (энергии фотонов hv = 1.3 - 1.6 эВ), при освещении образцов с противоположных сторон A и B (рис. 1). Следует заметить,

Рис. 1. Типичная конфигурация образцов для измерения фотопроводимости.

что из-за малой величины произведения подвижности на время жизни дырок  $\mu_p \tau_p$  в поликристаллах CdTe фотопроводимость определяется неравновесными свободными электронами [8].

### 3. Результаты и их обсуждение

На рис. 2 представлен спектр фотопроводимости одного из таких образцов, измеренный на переменном токе (при модуляции светового потока с частотой  $f = 12.5 \Gamma$ ц). Спектр типичен для высокочистых кристаллов CdTe и представлен он для того, чтобы показать, во-первых, высокое качество обработки поверхности наших кристаллов (о чем свидетельствует малая скорость поверхностной рекомбинации — незначительный спад сигнала в области за краем собственного поглощения), во-вторых, отсутствие сколь-нибудь значительного количества примесных центров с локальными уровнями вблизи дна зоны проводимости и потолка валентной зоны (которые мы наблюдали при изучении температурных зависимостей проводимости аналогичных поликристаллов с несколько большим содержанием примесей [9]) и, в-третьих, отсутствие структуры сигнала за краем запрещенной зоны.

Забегая несколько вперед, отметим также идентичность спектров, измеренных при освещении образца со стороны A и со стороны B. Еще одни факт: оценка произведения времени жизни электронов на величину их подвижности по сигналу фотопроводимости на переменном токе дает значение  $3 \cdot 10^{-3}$  см<sup>2</sup>/B, что характерно для высокоомных кристаллов CdTe детекторного качества [10].

Приведенный спектр, однако, не дает представления о полном наборе электронных состояний дефектов, присутствующих в материале. Дело в том, что измерения фотопроводимости на переменном токе при модуляции светового потока с частотой f не позволяют регистрировать медленные ловушки, времена обмена носителями которых с разрешенными зонами  $\tau > 1/f$ . Именно такими ловушками, как правило, и являются протяженные дефекты.

На рис. 3 представлены спектры фотопроводимости того же самого образца, измеренные на постоянном токе (без модуляции) при освещении образца с разных сторон (рис. 3, a — свет падает на грань A, рис. 3, b — на грань B). Существенными отличиями этих спектров от спектра, представленного на рис. 1, являются сдвиг максимума сигнала в длинноволновую область и наличие структуры сигнала в области энергий фотонов больше ширины запрещенной зоны  $E_g$  материала. Кроме того, спектры на рис. 3, a, b отличаются друг от друга.



**Рис. 2.** Спектр фотопроводимости, измеренный на переменном токе (модулированный световой поток).



**Рис. 3.** Спектры фотопроводимости образца, измеренные на постоянном токе (без модуляции светового потока). *а* — освещение грани *A*, *b* — освещение грани *B*.

Физика и техника полупроводников, 2002, том 36, вып. 8



Рис. 4. Предполагаемая схема электронных переходов (см. текст).

Интерпретация полученных результатов вызывает некоторые затруднения прежде всего потому, что в мировой литературе отсутствуют аналогичные данные. Не существует также и сколь-нибудь убедительных представлений о процессах накопления заряда даже на дислокациях, не говоря уже о межзеренных границах. Все же результаты, по нашему мнению, можно объяснить, если предположить, что фотопроводимость определяется протяженными дефектами, которые за время освещения успевают накопить достаточно большой заряд.

В своем предположении мы исходим из следующих фактов.

Во-первых, трудно полагать, что остаточные примеси, находящиеся в состоянии замещения, или собственные точечные дефекты могут столь существенно влиять на зонную структуру — приводить к появлению локальных электронных состояний внутри зоны проводимости, что позволило бы объяснить наличие структуры сигнала фотопроводимости за краем собственного поглощения.

Во-вторых, используемый нами метод выращивания и приготовления поликристаллов не может приводить к такому значительному градиенту распределения примесей или собственных точечных дефектов, которым можно было бы объяснить различия спектров фотопроводимости при освещении образца с разных сторон. Эти различия, по-видимому, связаны с пространственными изменениями структуры протяженных дефектов [11], например, с расположением границ зерен в объеме образца или различной их ориентацией вдоль направления текстуры.

Используя всю совокупность известных из литературы данных для объяснения полученных результатов, мы предлагаем следующую модель. Давно показано [12], что заряженные дислокационные трубки, например, вызывают локальные деформации энергетических зон полупроводника, что приводит к появлению потенциальных барьеров для захвата (или возбуждения) неравновесных носителей заряда.

Наблюдаемые нами провалы сигнала фотопроводимости в области за краем собственного поглощения обусловлены, по-видимому, захватом возбуждаемых в зону проводимости электронов на ловушки протяженных дефектов при преодолении электронами определенных барьеров  $E_b$  (рис. 4). Заметим, что в [13] возникновение Z-полосы в спектрах фотолюминесценции в CdTe объясняется на основе аналогичной модели.

На рис. 5 представлен спектр фотопроводимости того же образца после его отжига в насыщенных парах Cd при температуре ~ 650°C в течение 72 ч. В этом случае освещение образца с разных сторон не приводит к изменению структуры сигнала. Однако отжиг привел к существенному изменению электронных состояний имеющихся в образце ловушек электронов.

Во-первых, видно, что возбуждаемые электроны с энергиями, большими  $E_g$ , захватываются только на один тип ловушек при незначительном разбросе их энергий (узкий провал сигнала, который нельзя объяснить экситонным поглощением, поскольку при измерениях на переменном токе этот провал отсутствует).

Во-вторых, отчетливое плечо на сигнале фотопроводимости говорит о том, что вторая ловушка превратилась в известный для CdTe центр захвата электронов с уровнем  $E_v + 0.035(\pm 0.02)$  эВ.

Эти результаты свидетельствуют о том, что длительный отжиг приводит либо к реконструкции ненасыщен-



**Рис. 5.** Спектр фотопроводимости образца, отожженного в парах Cd.

ных связей в области протяженных дефектов, либо к существенному перераспределению фоновых примесей вблизи протяженных дефектов. Какое из этих предположений наиболее близко к реальности, предстоит выяснить.

#### 4. Заключение

Еще сравнительно недавно поликристаллические полупроводниковые материалы использовались лишь в селеновых выпрямителях и порошковых люминофорах. Однако за последнее десятилетие картина резко изменилась. В микроэлектронике, оптоэлектронике, солнечной энергетике все шире начали применяться поликристаллы и поликристаллические пленки соединений А<sup>III</sup>В<sup>V</sup> и А<sup>II</sup>В<sup>VI</sup>. К сожалению, получение необходимых и стабильно воспроизводимых свойств поликристаллических материалов сильно осложняется их структурными особенностями — наличием протяженых дефектов (межзеренные границы, дислокации). В зависимости, например, от типа границ, характера их взаимодействия с фоновыми и легирующими примесями электронные свойства поликристаллов могут различаться необычайно резко. С чем связаны эти различия — вопрос открытый. Существует два более или менее четко сформулированных мнения. В работе [12], где изучались бикристаллы германия, а также в работе [2] на примере дислокаций в кремнии был сделан вывод, что электронные состояния протяженных дефектов, возбуждающие вокруг себя электрические поля и поля упругих напряжений, определяются атомной структурой протяженных дефектов, в частности наличием оборванных связей. С другой стороны, авторы [1], на примере тех же дислокаций в кремнии, утверждают, что спектр электронных состояний определяется природой взаимодействия межзеренных границ с остаточными примесями.

Результаты нашей работы свидетельствуют, скорее всего, в пользу первого мнения.

Для окончательного подтверждения (или опровержения) этого мнения в дальнейшем необходимо будет использовать более сложные методы исследований, и прежде всего локально-структурные.

Авторы выражают глубокую благодарность проф. В.С. Багаеву за ценные советы.

Работа выполнена при поддержке РФФИ (проекты № 99-02-1861 и № 01-02-16500).

### Список литературы

- S. Pizzini, N. Butta, M. Acciary, M. Acciarri. Springer Proc. in Phys., 54, 178 (1991).
- [2] W. Schröter, I. Kronewitz, U. Gnauert, F. Riedel, M. Seibt. Phys. Rev. B, 52, 13726 (1995).
- [3] V. Celli, A. Golf, R. Thomson. Phys. Rev. Lett., 8, 96 (1962).
- [4] H. Teichlev. Lattice Defects in Semiconductors. IOP Conf. Proc., № 23 (1974).

- [5] С.А. Медведев, Ю.В. Клевков, В.С. Багаев, А.Ф. Плотников. Наука производству, 6 (31), 16 (2000).
- [6] Р. Бьюб. Фотопроводимость твердых тел (М., Иностр. лит., 1962).
- [7] H.F. Matare, K.S. Cho. J. Appl. Phys., 36, 3427 (1965).
- [8] В.Е. Лошкарев, М.К. Шейнкман, А.В. Любченко. *Неравновесные процессы в фотопроводниках* (Киев, Наук. думка, 1981) с. 264.
- [9] Ю.В. Клевков, С.А. Колосов, С.А. Медведев, А.Ф. Плотников. ФТП, 35, 1192 (2001).
- [10] Y. Eisen, A. Shor. J. Cryst. Growth, 184/185, 1302 (1998).
- [11] Поликристаллические полупроводники, под ред. Г. Харбеке (М., Мир, 1989) ч. 1.
- [12] H.F. Matare. J. Appl. Phys., 56, 2605 (1984).
- [13] J. Krustok, J. Mädasson, J. Hiie. Phys. St. Sol. (a), 165, 517 (1998).

Редактор Л.В. Шаронова

# Photoconductivity of the coarse-grained polycrystals of CdTe

S.A. Medvedev, Y.V. Klevkov, S.A. Kolosov, V.S. Krivobok, A.F. Plotnikov

P.N. Lebedev Physical Institute, Russian Academy of Sciences, 117924 Moscow, Russia

**Abstract** The photoconductance spectra of textured coarsegrained polycrystals of CdTe synthesized from the high-purified components at low temperatures has been studied. It is shown that their photoconductivity is determined by complexes of extended defects with segregated impurities.