«Иммерсионные» инфракрасные светодиоды с оптическим возбуждением на основе узкозонных полупроводников А^{III}В^V

© М. Айдаралиев, Н.В. Зотова, С.А. Карандашев, Б.А. Матвеев[¶], М.А. Ременный, Н.М. Стусь, Г.Н. Талалакин

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 2 октября 2001 г. Принята к печати 9 октября 2001 г.)

Приведены спектральные характеристики и мощность излучения светодиодов для диапазона длин волн 3.3–7 мкм, изготовленных из структур, содержащих узкозонные слои In(Ga)As, InAsSb(P) или InAs на подложке n^+ -InAs (ширина полосы $\sim \lambda_{\rm max}/10$) или InSb (ширина полосы ~ 1 мкм), в которых накачка осуществлялась с помощью светодиода из арсенида галлия. В светодиодах с иммерсионными линзами получен коэффициент преобразования 0.08–3 мВт/А, сравнимый или превосходящий данные для ряда инжекционных светодиодов.

1. Введение

Для получения наибольшей эффективности при работе источников и приемников излучения в средней инфракрасной (ИК) области спектра актуальным является получение низкой концентрации носителей в активной области. Так, для получения излучения в "длинноволновой" области (6 мкм) в качестве активного слоя светодиода (СД, LED) использовался антимонид индия с собственной проводимостью [1], в СД на основе твердых растворов, излучающих при 3-5 мкм, повышение эффективности достигалось за счет использования в процессе их получения геттерирующих редкоземельных элементов [2,3]. Вместе с тем следует отметить, что выращивание в одном процессе *p*-*n*-перехода и активной области не всегда приводит к желаемым результатам из-за диффузии легирующих примесей. Задача создания источников излучения в средней ИК области значительно упрощается, если использовать два раздельных процесса для создания активной области и инжектора. Такое разделение легко может быть осуществлено в конструкции с оптическим возбуждением активного слоя (или "люминофора") внешним источником [4,5], в которой узкозонная (активная) и широкозонная (инжектирующая) части прибора, сопряженные с помощью оптически прозрачного "клея", не составляют единой монокристаллической структуры и поэтому могут быть изготовлены независимо друг от друга. Широкозонный возбуждающий источник, например, светодиод из GaAs, может быть сопряжен с узкозонным "люминофором" посредством халькогенидного стекла с высоким показателем преломления ($\bar{n} = 2.6$) [6], при этом в структурах с узкозонной частью на основе In(Ga)As(Sb) в геометрии "на просвет" удается достичь выходной мощности, близкой к мощности лучших светодиодов на основе $A^{III}B^V$ [5].

Одним из важных достоинств светодиодов с оптическим возбуждением (ОВСД) является наличие свободной от контактов излучающей поверхости, что создает благоприятные условия для оптической стыковки последней с иммерсионными линзами, позволяющими значительно уменьшить потери на отражение и сузить диаграмму направленности излучения, однако подобные "иммерсионные" светодиоды ранее не исследовались.

В настоящем сообщении мы приводим характеристики OBCД, сопряженных с иммерсионными линзами из CdSb, в которых узкозонная часть состоит из InAs, близких к нему по составу твердых растворов In(Ga)As, InAsSb(P) или из InSb, имеющих электронную проводимость и излучающих в диапазоне длин волн $\lambda = 3-7$ мкм.

2. Образцы и методика измерений

В качестве активных слоев ("люминофоров") ОВСД с длиной волны излучения $\lambda = 4.3 - 5.5$ мкм использовались нелегированные эпитаксиальные слои InAsSbP *п*-типа проводимости (с концентрацией электронов $n \approx 10^{17} \, {\rm cm}^{-3})$ с градиентом ширины запрещенной зоны $\nabla E_g = 1 - 2$ мэВ/мкм толщиной 30-50 мкм, полученные методом жидкофазной эпитаксии при 650-720°С на подложках n-InAs с концентрацией электронов $n = (2-4) \cdot 10^{16} \, \text{см}^{-3}$, ориентированных в плоскости (111). Основные структурные свойства подобных образцов, в которых ширина запрещенной зоны убывает в направлении роста, описаны нами в [7,8]. Для более коротковолновых ОВСД ($\lambda = 3.1 - 3.6$ мкм) применяли "люминофоры" из двойных или одиночных гетероструктур p-InAsSbP/n-InGaAs/n-InAsSbP, p-InAsSbP/n-InGaAs или p-InAsSbP/n-InAs, выращенных при тех же температурах, но на сильно легированных подложках n^+ -InAs, с концентрацией электронов $n = (3-6) \cdot 10^{18} \text{ см}^{-3}$, ориентированных в плоскости (100). Высокая степень легирования имела следствием вырождение электронов зоны проводимости (эффект Мосса-Бурштейна) и обеспечивала низкие потери при выводе излучения "на просвет" [5]. При этом толщины "люминофоров" из In(Ga)As или InAs составляли ~ 1 мкм, а широкозонных ограничительных слоев InAsSbP (ширина запрещенной зоны $E_g \approx 430 \text{ мэB}$) 3–5 мкм. В большинстве случаев выращивание производилось из легированных Gd расплавов, как описано в работе [2].

[¶] E-mail: bmat@iropt3.ioffe.rssi.ru

Рис. 1. Конструкция "иммерсионного" светодиода (слева) и диаграмма направленности излучения (справа) для поверхностно излучающего (тонкая линия) и "иммерсионного" (толстая линия) светодиодов. 1 — линза CdSb, 2 — эпоксидная смола, 3 — узкозонный активный элемент, выполненный из полупроводника $A^{III}B^{V}$ или гетероструктуры, 4 — возбуждающий источник (светодиод), 5 — кремниевый носитель, 6 — корпус TO-39, 7 — катод, 8 — анод, соединенный с центральной частью (с мезой).

Подложка в градиентных структурах InAsSbP/InAs удалялась с помощью селективного химического травления; подложка в гетероструктурах, выращенных на n^+ -InAs, утонышалась до ~70 мкм. В качестве длинноволнового "люминофора" ($\lambda \approx 7$ мкм) применялась пластина n-InSb с $n = (1-3) \cdot 10^{16}$ см⁻³ толщиной ~ 7 мкм.

Излучение ОВСД (или, другими словами, фотолюминесценция "на просвет") измерялось при комнатной температуре при возбуждении с помощью светодиода из GaAs с длиной волны $\lambda \approx 0.87\,\mathrm{мкm}$ и внешним квантовым выходом $\eta_{\rm ext} \approx 8\%$, имеющего размеры $1 \times 0.9 \,\text{мm}^2$ и диаметр мезы 0.3 мм, смонтированного на кремниевом носителе размерами $1.1 \times 1.6 \times 0.4$ мм³. Чип имел подковообразную контактную площадку для п-области (катод) и круглый р-контакт (анод), расположенные в одной плоскости, что характерно для структур типа "flip chip bonded" или "episide-bonded structures" (см. также рис. 1 в [9]). Благодаря отсутствию контактных областей на внешней поверхности возбуждающего GaAs-светодиода нам без затруднений удалось закрепить на его поверхности узкозонную люминесцирующую структуру. При этом оптическое сопряжение узкозонного слоя с возбуждающим светодиодом было осуществлено с помощью халькогенидного стекла, имеющего показатель преломления $\bar{n} = 2.6$ и сопряженного с InSb или с узкозонной частью градиентного слоя InAsSb(P), или со слоями р-типа соответствующих гетероструктур.

Во всех спектральных измерениях было использовано синхронное детектирование импульсного сигнала частотой 500 Гц и длительностью импульса 5–30 мкс, получаемого с охлаждаемого фотодиода из CdHgTe, имеющего максимальную чувствительность на длине волны 9.4 мкм. Измерения мощности производились с учетом особенностей спектров и диаграммы направленности ОВСД.

Иммерсионная линза из CdSb ($\bar{n} \approx 5$) диаметром и высотой ~ 3.5 мм состыковывалась с излучающей поверхностью также с помощью халькогенидного стекла и окончательно фиксировалась эпоксидной смолой, как показано в левой части рис. 1. Как видно из углового распределения излучения в дальнем поле, представленном в правой части рис. 1, имеет место существенное сужение диаграммы направленности ОВСД с иммерсионной линзой до величины FWHM (ширина на полувысоте) ~ 50°.

3. Результаты и обсуждение

Спектры излучения ОВСД имели схожие с типичными для обычных СД характеристики, т. е. имели одиночную полосу с максимумом, соответствующим межзонным переходам, при этом энергия максимума $hv_{\rm max}$ была близка к E_g , а ширина спектра на половине высоты составляла 30–50 мэВ. Типичные спектры ОВСД из InSb и InAsSb(P) показаны на рис. 2. В отличие от аналогов, например, светодиода InSb/InAlSb ($\lambda_{\rm max} \approx 5.5$ мкм), полученного методом молекулярно-лучевой эпитаксии [1], в наших СД мы не наблюдали динамического эффекта Мосса–Бурштейна при сопоставимых уровнях выходной мощности. Следствием этого является более длинноволновый, чем в [1], пик излучения ($\lambda_{\rm max} \approx 7$ мкм) и в 2 раза меньшая, чем в [1], ширина спектра (~ 1 мкм).

Отличительной особенностью ОВСД из InSb являются также его небольшие размеры, позволяющие производить эффективную оптическую стыковку с волокнами или линзами. Отметим, что из-за резкого падения коэффициента преобразования при больших токах авторы [1] для практических задач были вынуждены использовать СД размерами 3 × 3 мм².

Рис. 2. Спектр излучения ОВСД с активной областью из градиентного слоя InAsSb (штриховая линия) и из InSb (сплошная кривая) при комнатной температуре.

Физика и техника полупроводников, 2002, том 36, вып. 7

Рис. 3. Мощность излучения ОВСД при токе I = 1 A по результатам данной работы (I и штриховая линия, левая шкала), коэффициент преобразования при токе I = 0.2 A для единичной площади [10] (2, правая шкала) и отношение максимальной мощности отрицательной люминесценции p-n-гомо-перехода к току насыщения по результатам данной работы (3 и сплошная линия, левая шкала) в зависимости от длины волны.

Влияние иммерсионной линзы проявилось не только в сужении диаграммы направленности (см. рис. 1), но также и в существенном (в ~ 10 раз) увеличении мощности излучения по сравнению с аналогичными поверхностно излучающими СД без каких бы то ни было покрытий. На рис. 3 показана выходная световая мощность при токе I = 1 А в зависимости от длины волны излучения. Как видно из рис. 3, ход зависимости мощности от длины волны совпадает с зависимостью коэффициента преобразования (КП) от λ для инжекционных светодиодов, взятой нами из работы [10]. Из этого можно заключить, что основной вклад в снижение мощности излучения с увеличением длины волны вносит изменение квантового выхода, а не падение эффективности инжекции p-n-перехода.

Изменение излучательной способности полупроводниковых слоев при варьировании ширины запрещенной зоны чаще всего связывают с изменением скоростей безызлучательной рекомбинации [11,12]. Зависимости на рис. З можно также сопоставить с параметрами, характеризующими состояние полупроводника (или p-n-перехода) при термодинамическом равновесии при различных значениях энергетического зазора (или E_g) по аналогии с тем, как это было сделано Б.И. Степановым для двухуровневой системы [13]. При этом под такими параметрами мы понимаем мощность отрицательной люминесценции p-n-перехода (NLP), т.е. избыточную поглощательную способность полупроводника при экстракции носителей из активной области (см., например, [14]), и ток насыщения (I_{sat}) . Пользуясь двумя этими параметрами, можно определить максимально возможный коэффициент преобразования как отношение NLP/Isat. Такой подход оправдан наличием линейного участка зависимости выходной мощности от тока (обратного и(или) прямого тока при их сопоставимых значениях); линейность этой зависимости следует из самых общих рассуждений¹ и из многочисленных экспериментальных наблюдений положительной и отрицательной люминесценции [14-16]. На рис. 3 представлены величины NLP/Isat, полученные вычислением площади перекрытия спектра абсолютно черного тела и спектра излучения СД на основе *p*-*n*-гомоструктур, описанных в [10] и близких по составу и геометрии к изучаемым здесь объектам, с последующим делением интеграла перекрытия на экспериментальные значения токов насыщения (38, 5 и 0.1 мА для длин водн излучения 5.3, 4.3 и 3.3 мкм соответственно). Из рис. 3 видно, что величины NLP/Isat на порядок меньше мощности "иммерсионных" ОВСД (I = 1 A), что удовлетворительно согласуется с полученным нами коэффициентом уменьшения потерь Брюстера при создании "иммерсии". Величина NLP/Isat с достаточной достоверностью предсказывает также изменение излучательной способности полупроводника с длиной волны, что можно использовать для оценки качества инжекционных светодиодов.

Нам представляется, что ОВСД наиболее подходят для получения излучения в длинноволновой области спектра, поскольку они оказались одинаковой мощности с СД на основе InAs ($\lambda = 3.3$ мкм) [17] и в несколько раз более мощными, чем СД на основе InSb/InAlSb ($\lambda = 6$ мкм) [1].

4. Заключение

Таким образом, нами созданы оптически возбуждаемые светодиоды для среднего ИК диапазона спектра $(\lambda = 3.3 - 7 \text{ мкм})$ на основе полупроводников (структур) $A^{III}B^V$, сопряженные с иммерсионной оптикой, имеющие мощность, близкую или превосходящую лучшие значения, получаемые в обычных светодиодах. Высокое напряжение и соответственно высокая потребляемая мощность таких светодиодов компенсируются простотой в изготовлении, поскольку узкозонный активный слой может быть приготовлен без применения методов фотолитографии и формирования n-p-перехода. Отметим также, что предложенная конструкция ОВСД будет полезна для волоконно-оптических датчиков, поскольку стыковка таких СД с волокном не представляет технических трудностей.

Авторы считают приятным долгом поблагодарить О.Н. Сараева за предоставление чипов светодиодов GaAs.

 $^{{}^{1}\}Delta P = P_{0}(np-n_{0}p_{0})/n_{i}^{2}$, где P_{0} , P — мощность равновесного (теплового) и неравновесного излучения полупроводника, n_{0} , p_{0} , n, p — концентрации носителей в равновесии и при смещении соответственно, n_{i}^{i} — собственная концентрация носителей в полупроводнике.

Работа поддержана Министерством науки и технологий РФ в рамках программы "Разработка фундаментальных и технологических основ создания новых наноструктур для электроники и оптоэлектроники" и газонефтяной корпорацией Schlumberger Oilfield Services при административной поддержке со стороны Фонда гражданских исследований США для стран СНГ (CRDF).

Список литературы

- [1] J.G. Crowder, T. Ashley, C.T. Eliott, G.J. Pryce, A.D. Johnson. Electron Lett., **36**, 1867 (2000).
- [2] Н.В. Зотова, С.А. Карандашев, Б.А. Матвеев, М.А. Ременный, Н.М. Стусь, Г.Н. Талалакин. ФТП, 33 (8), 1010 (1999).
- [3] A. Krier, H.H. Gao, V.V. Sherstnev. J. Appl. Phys., 85 (12), 8419 (1999).
- [4] C. Roux, E. Hadji, J.-L. Pautrat. Appl. Phys. Lett., 75 (24), 3763 (1999).
- [5] Н.В. Зотова, С.А. Карандашев, Б.А. Матвеев, М.А. Ременный, Н.М. Стусь, Г.Н. Талалакин, В.В. Шустов. ФТП, 35 (3), 371 (2001).
- [6] B.A. Matveev, N.V. Zotova, N.D. Il'inskaya, S.A. Karandashov, M.A. Remennyi, N.M. Stus', G.N. Talalakin. Patent PCT/WO 00/65665 (2000).
- [7] Б.А. Матвеев, Н.М. Стусь, Г.Н. Талалакин. Кристаллография, **32** (1), 216 (1988).
- [8] B.A. Matveev, N.V. Zotova, S.A. Karandashov, M.A. Remennyi, N.M. Stus', G.N. Talalakin. SPIE, **4278**, 189 (2001).
- [9] М. Айдаралиев, Н.В. Зотова, С.А. Карандашев, Б.А. Матвеев, М.А. Ременный, Н.М. Стусь, Г.Н. Талалакин. ФТП, 34 (1), 99 (2000).
- [10] М. Айдаралиев, Н.В. Зотова, С.А. Карандашев, Б.А. Матвеев, М.А. Ременный, Н.М. Стусь, Г.Н. Талалакин. ФТП, 35 (5), 619 (2001).
- [11] M.E. Flatte, C.H. Grein. T.C. Hasenberg, S.A. Anson, D.-J. Jang, J.T. Olesberg, T.F. Boggess. Phys. Rev. B, 59 (8), 5745 (1999).
- [12] G.G. Zegrya, A.D. Andreev. Appl. Phys. Lett., 67 (18), 2681 (1995).
- [13] Б.И. Степанов. Основы спектроскопии отрицательных световых потоков (Минск, 1961).
- [14] W.W. Bewley, M.J. Jurkovic, C.L. Felix, J.R. Lindle, I. Vurgaftman, J.R. Meyer, E.H. Aifer, J.E. Butler, S.P. Tobin, P.W. Norton, M.A. Hutchins. Appl. Phys. Lett., 78 (20), 3082 (2001).
- [15] L.J. Olafsen, I. Vurgaftman, W.W. Bewley, C.L. Felix, E.H. Aifer, J.R. Meyer, J.R. Waterman, W. Mason. Appl. Phys. Lett., 74(18), 2681 (1999).
- [16] B.A. Matveev, N.V. Zotova, S.A. Karandashev, M.A. Remennyi, N.M. Stus', G.N. Talalakin. IEE Optoelectronics Proc., 149, 33 (2002).
- [17] A. Krier, V.V. Sherstnev. J. Phys. D: Appl. Phys., 33, 101 (2000).

Редактор Л.В. Шаронова

"Immersion" lens infrared light emitting diodes with optical excitation on the base of narrow-gap $A^{III}B^{V}$ semiconductors

M. Aidaraliev, N.V. Zotova, S.A. Karandashev, B.A. Matveev, M.A. Remennyi, N.M. Stus', G.N. Talalakin

loffe Physicotechnical Institute, Russian Academy on Sciences, 194021 St. Petersburg, Russia

Abstract Spectral and power characteristics of light emitting diodes (LEDs) with GaAs pump LED comprising narrow gap layers of In(Ga)As, InAsSb(P) or InAs onto n^+ -InAs (band width $\sim \lambda_{max}/10$) or InSb (band width $\sim 2.5 \,\mu$ m) substrate and emitting at $3.3 - 7 \,\mu$ m are reported. LEDs equipped with immersion lens ehxibited conversion efficiency as high as $0.08-3 \,\text{mW/A}$ that is close to the best reported values for injection LEDs.