Волноводные фотоприемники в системе InGaAsP/InP для измерения автокорреляционных функций излучения малой мощности на длине волны 1.55 мкм

© Н.Ю. Гордеев[¶], Л.Я. Карачинский, И.И. Новиков, А.В. Лютецкий, Н.А. Пихтин, Н.В. Фетисова, И.С. Тарасов, П.С. Копьев

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 19 декабря 2001 г. Принята к печати 20 декабря 2001 г.)

Проведено исследование двухфотонного поглощения света с длиной волны 1.55 мкм в серии лазерных гетероструктур InGaAsP/InP с квантовыми ямами. Наибольшая нелинейная чувствительность составила величину 0.78 нА/мВт². Минимальная детектируемая пиковая мощность излучения 60 мкВт позволяет эффективно использовать волноводы такого типа в качестве детектора в оптическом автокорреляторе для исследования временны́х характеристик сигналов малой мощности.

1. Введение

Корреляционные методы исследования уже на протяжении многих лет используются для измерения параметров сверхкоротких световых импульсов [1]. Они замещают собой обычные методы детектирования со стробоскопической временной разверткой при исследовании импульсов субпикосекундного и фемтосекундного диапазонов [1]. При измерении автокорреляционных функций используется нелинейность детектирующего элемента, которая может достигаться за счет таких эффектов, как генерация второй гармоники [2], двухфотонная флуоресценция [3], двухфотонное поглощение [4]. Двухфотонное поглощение является нерезонансным нелинейным процессом, в котором участвуют фотоны с энергией hv, меньшей ширины запрещенной зоны полупроводника E_g , но большей Eg/2. Для фотонов с такими энергиями вероятность однофотонного поглощения крайне мала. Когда на полупроводник падает излучение высокой интенсивности, электрон может попасть из валентной зоны в зону проводимости в результате последовательного поглощения двух фотонов. В этом случае электрон в процессе перехода оказывается на некоторое время на виртуальном уровне в запрещенной зоне [5]. Условием перехода электрона на этот уровень является сохранение момента, а время жизни на уровне определяется из принципа неопределенности Гейзенберга [6].

В случае, если на полупроводник падает свет с энергией hv, такой что $E_g/2 < hv < E_g$, практически все генерируемые при этом неравновесные носители заряда будут являться следствием двухфотонного поглощения. Измеряя фототок, можно удостовериться в этом, так как в случае преобладания двухфотонного поглощения над линейным зависимость фототока от падающей мощности будет квадратичной. Вследствие этого данный механизм может быть использован в автокорреляционной методике наряду с другими, такими как генерация второй гармоники. Принципиальным моментом является использование именно волноводных структур, поскольку больший путь света в волноводе по сравнению с планарной конструкцией существенно увеличивает поглощение [7]. Именно эффект двухфотонного поглощения в полупроводниковом волноводе с успехом используется для исследования временны́х характеристик излучения инжекционных полупроводниковых лазеров (см., например, [8,9]). В частности, в работе [10] с помощью оптического автокоррелятора, имеющего волновод AlGaAs/GaAs в качестве нелинейного детектора, были исследованы импульсы сверхизлучения InGaAsP/InP-лазеров (длина волны излучения 1.3 мкм) как выше, так и ниже порога лазерной генерации.

Цель данной работы заключалась в создании волноводного фотоприемника, работающего на эффекте двухфотонного поглощения, для длины волны 1.55 мкм, позволяющего регистрировать сигналы с пиковой мощностью ~ 1 мВт.

2. Эксперимент

Для данных исследований были выбраны лазерные квантово-размерные гетероструктуры раздельного ограничения InGaAsP/InP ($\lambda = 1.3$ мкм), выращенные методами жидкофазной эпитаксии (структура 1) [11] и МОС-гидридной эпитаксии (газофазной эпитаксии из металлорганических соединений) (структуры 2 и 3) [12]. Следует отметить, что в лазерах с широким контактом, изготовленных на основе этих структур, были получены рекордные мощности излучения в непрерывном режиме [12,13]. Наши исследования показали, что структуры 2 и 3 обладают высоким внутренним квантовым выходом стимулированного излучения (90%) и низкими внутренними оптическими потерями ($\sim 3 \, {\rm cm}^{-1}$) [14]. Структура 1 имела одну ненапряженную квантовую яму InGaAsP толщиной 300 Å и волновод толщиной 0.6 мкм. В структурах 2 и 3 активная область состояла из двух напряженных квантовых ям (с напряжением сжатия 1%)

[¶] E-mail: gordeev@switch.ioffe.rssi.ru

Рис. 1. Схема установки для исследования двухфотонного поглощения. *I* — лазерный диод; *2* — волноводный InGaAsP-фотодетектор, работающий на эффекте двухфотонного поглощения; *L*1, *L*2 — объективы; *P* — поляризатор; *3* — фазочувствительный селективный нановольтметр (Lock-in); *4* — генератор прямоугольных импульсов (Gen); *5* — осциллограф (Osc); *R*1 — измерительное сопротивление.

толщиной 50 Å каждая. Толщины волновода составляли 0.6 и 0.72 мкм в структурах 2 и 3 соответственно.

Для исследования двухфотонного поглощения из этих структур были изготовлены образцы, по конструкции аналогичные одномодовым лазерам типа "мелкая меза" с шириной полоскового контакта W = 5 мкм [15]. Длина волновода составляла 350 мкм (структура 1) и 1000 мкм (структуры 2 и 3). Для эффективного ввода света образцы монтировались на теплоотвод так, чтобы их передняя часть выступала за его пределы. В целом технология монтажа на теплоотвод была такая же, как и для лазерных кристаллов, что позводяет пропускать через образцы прямой ток, т.е. использовать их в качестве источника излучения.

Использование лазерных структур в качестве детектора оптического автокоррелятора позволяет существенно упростить процесс его юстировки, поскольку появляется возможность его настройки в "инверсном" режиме [9]. Основная идея данного метода заключается в том, что на начальном этапе юстировки нелинейный фотоприемник используется как источник излучения, а исследуемый лазер представляет собой линейный волноводный фотодетектор. Дальнейшая юстировка велась в нормальном режиме по наибольшему фототоку в двухфотонном фотоприемнике.

Двухфотонное поглощение в волноводах измерялось с помощью установки, изображенной на рис. 1. В качестве источника излучения использовался одномодовый инжекционный лазер (I) с длиной волны излучения 1.55 мкм. Накачка осуществлялась квазинепрерывным током (длительность импульса 10 мкс, частота повторения импульсов 7 кГц). Интенсивность света, падающего на фотоприемник (2), изменялась с помощью

поляризатора (*P*). Исследуемый волновод закреплялся на трехкоординатном позиционере с минимальным шагом перемещения 0.5 мкм. Фототок регистрировался с помощью фазочувствительного селективного нановольтметра типа Unipan 232B (*3*). Следует отметить, что все фотоприемники исследовались без приложения обратного смещения. Это позволяет уменьшить электрические шумы и таким образом улучшить соотношение сигнал/шум. При настройке экспериментальной установки использовался уже упоминавшийся "инверсный" режим.

3. Результаты и обсуждение

Для оценки эффективности процессов двухфотонного поглощения в полупроводниковом волноводе используют такой параметр, как нелинейная чувствительность. При этом величина нелинейной чувствительности берется как коэффициент при квадратичном члене в нелинейной зависимости фототока в волноводе от падающей на торец водновода световой мощности [16] и имеет размерность [ток]/[мощность]².

Зависимость фототока от падающей световой мощности представлена на рис. 2. Поскольку зависимость имеет нелинейный характер, ее удобно строить в логарифмическом масштабе. Для исследованных структур величина нелинейной чувствительности находилась в достаточно широком диапазоне. Минимальное значение составило $4.5 \cdot 10^{-3}$ нА/мВт², максимальное — 0.78 нА/мВт². Эти величины соответствуют наблюдавшимся ранее в структурах подобного типа [16].

При относительно высоких пиковых мощностях ($\sim 1 \, \text{Br}$), а также при сверхмалых ($\sim 1 \, \text{мBr}$) применение волноводов ограничено значительной долей линейного поглощения. Природа этого эффекта не имеет чет-

Рис. 2. Зависимость фототока от падающей световой мощности при двухфотонном поглощении в волноводных гетеоструктурах InGaAsP/InP. Указаны номера структур. Для каждой структуры приведена квадратичная составляющая (штриховая линия), для структуры 2 показана и линейная составляющая (пунктирная линия). Величина нелинейной чувствительности для структур 1–3: 4.5 · 10⁻³, 0.78, 3.4 · 10⁻² нА/мВт².

кого объяснения [16]. Очевидно, что нижний предел световой мощности, для которого можно использовать фотоприемник, определяется, во-первых, его нелинейной чувствительностью, т.е. фактически производимым им фототоком, во-вторых, соотношением нелинейного и линейного поглощения. Лучшие значения мы получили у волноводной структуры с двумя квантовыми ямами в активной области. При этом минимальная детектируемая пиковая мощность непосредственно перед фотоприемником составила величину 60 мкВт. Нужно отметить, что реальная мощность, попадаемая в волновод, по крайней мере не больше этого значения. Использование позиционера с меньшим шагом перемещения, например, пьезокерамического, может повысить эффективность ввода излучения в волновод. Экстраполируя зависимость фототока (рис. 2) для структуры 2, получаем, что линейное поглощение вплоть до мощностей порядка 10 мкВт меньше нелинейного. Нами не выявлено прямой зависимости между конструкцией активной области и коэффициентом нелинейного поглощения. У структур с похожими активными областями коэффициенты отличались больше, чем на порядок. Мы предполагаем, что это может объясняться дефектами и примесями, находящимися в активной области и в волноводе в целом, поскольку при меньшем суммарном фототоке возрастает относительная доля линейного поглощения.

4. Заключение

Проведено исследование двухфотонного поглощения излучения с длиной волны 1.55 мкм в серии лазерных гетероструктур InGaAsP/InP с квантовыми ямами. Обнаружено, что значительная доля линейного поглощения при малых мощностях излучения приводит к существенному уменьшению суммарного фототока. Показано, что в волноводных фотоприемниках подобного типа нелинейная компонента поглощения может превышать линейную вплоть до мощностей ~ 10 мкВт. Минимальная детектируемая пиковая мощность может достигать величины 60 мкВт.

Полученные результаты позволяют использовать исследованные структуры в качестве нелинейных фотоприемников в оптическом автокорреляторе для исследования тонкой временной структуры излучения светодиодов, суперлюминесцентных диодов и лазерных диодов на длине волны 1.55 мкм.

Работа выполнена при поддержке РФФИ (грант № 01-02-17764) и 6-го конкурса-экспертизы проектов молодых ученых РАН (грант № 26). Один из авторов (Л.Я. Карачинский) выражает благодарность фонду INTAS за финансовую поддержку работы (грант N YSF 2001/2-97).

Авторы выражают благодарность А.М. Георгиевскому за интересное обсуждение полученных результатов.

Список литературы

- Й. Херман, Б. Вильгельми. Лазеры сверхкоротких световых импульсов (М., Мир, 1986).
- [2] H.P. Weber. J. Appl. Phys. 38, 2231 (1967).
- [3] J.A. Giordmaine, P.M. Rentzepis, S.L. Shapiro, K.W. Wecht. Appl. Phys. Lett., 11, 216 (1967).
- [4] Y. Takagi, T. Kobayashi, K. Yoshihara, S. Imamura. Optics Lett., 17, 658 (1992).
- [5] H.N. Spector. Phys. Rev. B, 35, 5876 (1987).
- [6] A. Miller, D.A.B. Miller, S.D. Smith. Adv. Phys., 30, 697 (1981).
- [7] F.R. Laughton, J.H. Marsh, D.A. Barrow, E.L. Portnoi. IEEE J. Quant. Electron., 30, 838 (1994).
- [8] H.K. Tsang, L.Y. Chan, J.B.D. Soole, H.P. LeBlanc, M.A. Koza, R. Bhat. Electron. Lett., 31, 1773 (1995).
- [9] А.М. Георгиевский, С.В. Зайцев. ПТЭ, 39, 132 (1996).
- [10] S.V. Zaitsev, A.M. Georgievski. Japan. J. Appl. Phys., 36, 4209 (1997).
- [11] А.В. Овчинников. Автореф. канд. дис. (Л., 1988).
- [12] Е.Г. Голикова, В.А. Горбылев, Н.Ю. Давыдюк, В.А. Курешов, А.Ю. Лешко, А.В. Лютецкий, Н.А. Пихтин, Ю.А. Рябоштан, В.А. Симаков, И.С. Тарасов, Н.В. Фетисова. Письма ЖТФ, 26, 5 (2000).
- [13] D.Z. Garbuzov, S.E. Goncharov, Yu.V. Il'in, A.V. Mikhailov, N.A. Pikhtin, I.S. Tarasov, A.V. Ovchinnikov. *ISFOC* (Leningrad, 1991) v. 1, p. 144.
- [14] А.Ю. Лешко, А.В. Лютецкий, Н.А. Пихтин, Г.А. Скрынников, З.Н. Соколова, И.С. Тарасов, Н.В. Фетисова. ФТП, 34, 1457 (2000).
- [15] Е.Г. Голикова, В.А. Горбылев, Ю.В. Ильин, В.А. Курешов, А.Ю. Лешко, А.В. Лютецкий, Н.А. Пихтин, Ю.А. Рябоштан, В.А. Симаков, И.С. Тарасов, Е.А. Третьякова, Н.В. Фетисова. Письма ЖТФ, 26, 57 (2000).
- [16] D.T. Reid, W. Sibbett, J.M. Dudley, L.P. Barry, B. Thomsen, J.D. Harvey. Engineering and Laboratory Notes. Suppl. to Optics and Photonics (OSA), 9, 8142 (1998).

Редактор Л.В. Шаронова

Waveguide photodetectors based on InGaAsP/InP for $1.55 \,\mu$ m lowpower autocorrelation measurements

N.Yu. Gordeev, L.Ya.Karachinsky, I.I. Novikov, A.V. Lyutetskiy, N.A. Pikhtin, I.S. Tarasov, N.V. Fetisova, P.S. Kop'ev

loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract Two-photon absorbtion of $1.55 \,\mu$ m light in quantum well InGaAsP/InP laser heterostructures is measured. Nonlinear response as high as $0.78 \,\text{nA/mW}^2$ has been found. Minimal detectable peak power $60 \,\mu$ W allows using this kind of semiconductor waveguide as a detecor in optical autocorrelator to investigate low-power signals.