Мелкие *p*-*n*-переходы в Si, изготовленные методом импульсного фотонного отжига

© С.Т. Шишияну[¶], Т.С. Шишияну, С.К. Райлян

Технический университет Молдавии, 2012 Кишинев, Молдавия

(Получена 21 августа 2001 г. Принята к печати 9 октября 2001 г.)

Получены и исследованы мелкие и сверхтонкие переходы, изготовленные методом стимулированной диффузии Р из фосфоросиликатного стекла и В из боросиликатного стекла в Si при импульсном фотонном отжиге; исследованы их электрические, фотоэлектрические и оптические свойства. Установлены особенности стимулированной диффузии Р и В в приповерхностной области кремния при фотонном отжиге. Полученные результаты обсуждаются на основе различных механизмов диффузии — *kick-out*, вакансионно-межузельного и диссоциативного; профили распределения примеси объясняются моделью парной вакансионно-межузельной диффузии и моделью стимулированной диффузии с учетом временной зависимости поверхностной концентрации примеси и концентрационной зависимости коэффициента диффузии.

1. Введение

Мелкие и сверхмелкие p^+-n - и n^+-p -переходы на основе Si представляют большой интерес для дальнейшего увеличения степени интеграции, быстродействия и надежности интегральных схем (ИС), микроэлектронных приборов и различных видов самоупорядоченных микро- и наноструктур [1-3]. Особенно актуально это направление теперь, когда промышленность выпускает сверхбольшие ИС с размерами компонентов 0.18 мкм и в последующие годы еще меньше: 0.13 (2004 г.), 0.10 (2007 г.), 0.07 мкм (2010 г.)[3]. Кроме того, как показано в работе [1], сверхтонкие диффузионные p-nпереходы являются также эффективными структурами для создания продольных и поперечных сверхрешеток, самоупорядоченных микрорезонаторов и квантовых ям, одноэлектронных ячеек памяти и других новых наноэлектронных приборов.

Для получения субмикронных p-n-переходов используются различные методы: метод планарной диффузионной технологии с использованием избыточных потоков вакансий или собственных межузельных атомов, генерируемых поверхностью раздела кремний-окисел [4,5], имплантация бора при малых энергиях [6], метод двойной имплантации Si⁺ и B⁺, аморфизация кремния при имплантации BF₂ [7], метод протонирования [8], имплантация через тонкую пленку силицидов [9]. Из этих методов чаще всего используется метод предварительной аморфизации Si. Однако при этом методе очень сложно оптимизировать режим термообработки после имплантации для полной активации примесных атомов, устранения радиационных дефектов и торможения диффузии. Поэтому необходим поиск и других альтернативных методов.

Большой интерес представляет метод стимулированной диффузии с использованием лазерного отжига [10], радиации $(e^-, \alpha, \beta, \gamma)$ [11], комбинированного метода радиации и электрического поля [12], комбинированного метода радиации, имплантации и фотонного отжига [2,13]. Однако в качестве альтернативного промышленного метода изготовления сверхмелких *p*-*n*переходов все большее внимание уделяется технологии диффузионного легирования кремния бором из боросиликатного стекла (BSG) и фосфором из фосфоросиликатного стекла (PSG) с применением импульсного фотонного отжига (ИФО) или быстрого термического отжига (БТО), широко используемого для термообработки полупроводниковых кристаллов после ионной имплантации [2-5,14-16]. В работах [2-5,14,15] показано, что с помощью этой технологии можно получить сверхмелкие (10-30 нм) электронно-дырочные переходы с более резким, чем при ионной имплантации, диффузионным профилем примесных атомов В и Р в Si. Прецизионными методами масс-спектрометрии вторичных ионов (SIMS) и соответствующими расчетами авторами [14] установлено, что коэффициент диффузии бора в системе BSG-SiO₂-Si при БТО в 9-10 раз больше, чем при обычной диффузии.

В этой технологии могут быть использованы различные эффекты стимулирования диффузии, такие как эффект избыточных потоков неравновесных вакансий и межузельных атомов на границе кремний–окисел, эффект возбуждения электронной подсистемы и перезарядки примесных атомов при импульсном фотонном отжиге, другие эффекты при неравновесной стимулированной диффузии. Однако многие из этих эффектов еще недостаточно исследованы. Пока нет единого мнения о механизме и модели стимулированной диффузии бора и фосфора в Si [17]. Поэтому для широкого внедрения этой технологии необходимы дополнительные фундаментальные и прикладные исследования.

В данной работе приведены результаты исследования мелких и сверхмелких переходов в Si, изготовленных методом стимулированной диффузии P из PSG и B

I E-mail: sisianu@yahoo.com sisianu@mail.utm.md Tel/Fax: +3732.497007

Таблица 1	 Зависимость 	, глубины n^+	- <i>p</i> -перехода	(L) и	поверхностного	сопротивления	(ρ)	от	температуры	Τı	и длительности
фотонного	отжига (t) при	стимулиров	анной диффузі	иРи	3 Si						

<i>T</i> , °C	460	700	850*	900*	950*	1000	1050*	1080	1120	1180	1200
<i>t</i> , с	4	6	25	25	25	8	25	10	12	14	16
<i>L</i> , мкм	0.14	0.2	0.03	0.07	0.2	0.25	0.33	0.3	0.38	0.46	0.54
ρ, Ω/□	420	400	300	80	30	-	12	-	-	-	-

Примечание. * — температуры отжига T, при которых приведены данные из работы [15].

Таблица 2. Зависимость глубины *p*-*n*-переходов (*L*) от температуры *T* и длительности фотонного отжига (*t*) при стимулированной диффузии В в Si

<i>T</i> , °C	400	500	700	950*	1000*	1050*	1080	1120	1150	1200
<i>t</i> , с	2	4	6	60	60	60	10	12	14	16
<i>L</i> , мкм	0.13	0.18	0.2	0.1	0.2	0.33	0.32	0.36	0.4	0.51

Примечание. * — температуры отжига T, при которых приведены данные из работы [14].

из BSG при ИФО. Были измерены: глубина залегания $n^+ - p$ - и $p^+ - n$ -переходов, поверхностное сопротивление диффузионных слоев, вольт-амперные характеристики переходов, фотоэлектрические и оптические свойства переходов в качестве оптоэлектронных датчиков. Рассмотрены механизмы и модели стимулированной диффузии в приповерхностной области кремния.

2. Технология изготовления мелких переходов

Мелкие $n^+ - p$ - и $p^+ - n$ -переходы в Si изготовлялись методом стимулированной диффузии P из PSG и B из BSG при ИФО. Фосфоросиликатное стекло (PSG) на поверхность Si *n*-типа наносилось методом анодного окисления из разбавленного раствора H₃PO₄ или из газовой среды при низких (450°C) или высоких (1000°C) температурах. Нанесение при низких температурах проводилось на промышленной установке газофазной эпитаксии (HCVD), при подаче газовых смесей O₂, SiH₄, PH₃ и азота — в качестве носителя. Толщина пленки составляла ~ 1 мкм. Боросиликатное стекло (BSG) наносилось на кремний марки КЭФ-0.3 (111) при температуре 850°C в промышленных условиях. Толщина пленки ~ 1.3–2 мкм.

После нанесения PSG (или BSG) образцы подверглись импульсному фотонному отжигу на специальной установке с программным управлением режимов нагрева галогенными лампами в атмосфере инертного газа (Ar, N₂). Установка позволяет управлять температурой в рабочей камере в интервале $300-1200^{\circ}$ C с точностью $\pm 1^{\circ}$ C при длительности импульсов 1-100 с. Скорость нагрева образцов $180-200^{\circ}$ C/с.

После фотонного отжига образцы подвергались травлению для удаления стекла, затем наносились омические контакты.

Изготовленные образцы с n^+-p - и p^+-n -переходами исследовались различными методами: GDOES (Glow

Discharge Optical Emission Spectroscopy) [18], электрических, фотоэлектрических и оптических измерений.

3. Экспериментальные результаты

3.1. Глубина перехода и поверхностное сопротивление

На первом этапе исследовалась зависимость глубины залегания n-p- и p-n-переходов и поверхностного сопротивления диффузионных слоев после диффузии Р и В при различных температурах и длительностях ИФО. Результаты представлены в табл. 1, 2. Здесь также приведены результаты других авторов [14,15].

Из этих таблиц видно, что с увеличением температуры и длительности фотонного отжига (или БТО) при диффузии Р глубина залегания перехода увеличилась от 0.03 мкм при 850°C до 0.54 мкм при 1200°C, а поверхностное сопротивление уменьшилось от $300 \,\Omega/\Box$ при 850°С до $12 \Omega / \Box$ при 1050°С; в случае диффузии В глубина L увеличилась от 0.1 мкм при 950°C до 0.51 мкм при 1200°С. Следует отметить, что изменение со временем глубины диффузии фосфора и бора L(t) и поверхностного сопротивления $\rho(t)$ протекает быстрее, чем пропорционально \sqrt{t} , что наблюдалось и в работе [14]. Упрощенные оценки по данным из табл. 1 и 2 показали, что при импульсном фотонном отжиге коэффициент диффузии Р и В $(D = x^2/30t)$ в приповерхностной области Si на 1-2 порядка выше, а энергия активации меньше, чем при обычной диффузии.

3.2. Профили распределения Р и В в Si после фотонного отжига

Диффузионные профили распределения концентрации примесных атомов в кристалле играют важную роль в формировании свойств и характеристик приборов на их основе. Кроме того, они дают ценную информацию

Рис. 1. Профили распределения фосфора в Si после стимулированной диффузии при фотонном отжиге при условиях: *I* — 900°C, 16 с; *2* — 1000°C, 16 с.

Рис. 2. Динамика формирования вольт-амперных характеристик n^+-p -переходов. Число импульсов фотонного отжига: 1-2, 2-4, 3-6, 4-8.

о механизме диффузии и характере взаимодействия диффундирующих примесей с решеткой кристалла.

На рис. 1 представлены примеры диффузионных профилей распределения Р в Si, полученных методом GDOES, после мелкой диффузии при импульсном фотонном отжиге. Как следует из этих данных, концентрационные профили фосфора в приповерхностной области Si после фотонного отжига являются сложными, обладают двухступенчатой формой и не могут быть описаны стандартными функциями erfz или erfcz. Это свидетельствует о том, что в приповерхностной области механизм диффузии фосфора более сложный и не соответствует обычной модели замещения или внедрения примесных атомов в решетке кристалла.

3.3. Вольт-амперные характеристики переходов

На рис. 2 представлены примеры вольт-амперных характеристик $n^+ - p$ -переходов в процессе их формирования по мере увеличения количества импульсов фотонного отжига (длительность и температура одного импульса — 20 с и 1000°С). Из этого рисунка видно, что по мере увеличения количества импульсов характеристика формировалась от близкой к линейной зависимости (после 2 импульсов) до стабильной выпрямляющей характеристики (после 6 импульсов). Полученные переходы обладали хорошими выпрямляющими свойствами.

3.4. Фотоэлектрические свойства

На рис. 3 представлены характеристики фотодиодов, полученных фотонным отжигом (кривая 1) и обычной диффузией (кривая 2). В первом случае глубина залегания перехода составляла 0.15 мкм, во втором — 0.4 мкм. Соответственно и спектральная характеристика несколько шире для мелких переходов (1), чем для более глубоких переходов (2), для которых потери коротковолновой световой энергии больше за счет приповерхностного поглощения в кристалле.

Были также исследованы оптические свойства переходов и эффективность конверсии световой энергии в электрическую. Установлено, что с увеличением количества импульсов фотонного отжига от 2 до 10 эффективность солнечных элементов улучшалась одновременно с улучшением их выпрямляющих свойств. Эффективность конверсии и фактор заполнения увеличивались от 1.7%

Рис. 3. Спектральные характеристики фотодиодов, полученных фотонным отжигом (1) и обычной диффузией (2).

после 2 импульсов отжига до 5.9% после 6–8 импульсов. Эти параметры ниже, чем для традиционных кремниевых диффузионных солнечных элементов, для которых этот коэффициент составляет 8–12%. Мы связываем это с низким качеством контактов.

Обсуждение экспериментальных результатов

4.1. Главные особенности диффузии Р и В в Si при фотонном отжиге

Как следует из экспериментальных данных, при изготовлении мелких и сверхмелких переходов методом фотонного отжига выявлен ряд интересных особенностей:

 диффузия фосфора из PSG в приповерхностной области образцов при фотонном отжиге значительно быстрее, чем при обычной диффузии. Упрощенные оценки показали, что коэффициет стимулированной диффузии в приповерхностной области на 1–2 порядка выше коэффициента обычной диффузии;

2) профили распределения концентрации атомов фосфора являются сложными и не могут быть описаны стандартными функциями ошибок erfz или erfcz; зависимость от времени глубины диффузии L(t) и поверхностного сопротивления $\rho(t)$ протекает быстрее, чем пропорционально \sqrt{t} . Эти особенности свидетельствуют о том, что процесс стимулированной диффузии подчиняется более сложному механизму, чем механизмы внедрения и замещения атомов в кристаллической решетке;

3) во многих опытах было замечено, что эффект стимулирования (ускорения) более выражен при кратковременном (импульсном) фотонном отжиге или в начальной стадии более длительного фотонного отжига. Это свидетельствует о том, что эффект стимулирования диффузии связан с неравновесным взаимодействием дефект-примесь;

4) эффект стимулирования (ускорения) диффузии более выражен, когда образцы подвергаются одновременному взаимодействию и света, и тепла, т.е. когда образцы непосредственно облучаются светом при отжиге.

Эти особенности учтены нами при обобщении механизмов и моделей стимулированной диффузии Р и В в Si.

4.2. Механизмы стимулированной диффузии Р и В в системах (фосфоросиликатное стекло)–Si и (боросиликатное стекло)–Si

Для объяснения полученных результатов рассмотрим наиболее вероятные механизмы стимулированной диффузии Р и В в системах PSG–Si и BSG–Si.

4.2.1. Механизмы диффузии kick-out и диссоциативно-вакансионный. Еще в ранних работах [19–21] было показано, что в условиях окисления кремния диффузия бора из BSG и фосфора из PSG протекает значительно быстрее, чем без окисления. Эффект ускорения объясняется взаимодействием межузельных атомов кремния (Si_i) с примесными атомами (механизм *kick-out*) или взаиомодействием вакансий кремния V_{Si} с атомами примеси (диссоциативно-вакансионный механизм) [4–5,19–21]. В случае механизма *kick-out* имеют место следующие реакции с перезарядкой диффундирующих атомов В [4,5]:

$$(\mathbf{B}_i V_{\mathrm{S}i})^- + \mathbf{S}i_i^+ \to \mathbf{S}i_i^0 + \mathbf{B}_{\mathrm{S}}^0; \tag{1}$$

$$2(e+h) + B_{S}^{0} + Si_{i}^{0} \to (B_{i}V_{Si})^{-} + Si_{i}^{+} + e + h \to B_{S}^{0} + Si_{i}^{0}, (2)$$

где В_{*i*} — межузельный бор, В_S — бор на месте Si.

Согласно этим реакциям, основной вклад в обменное взаимодействие вносят реконструированные ионы В и межузельные атомы Si, их зарядовое состояние и рекомбинация термически возбужденных носителей через диффундирующие атомы (оже-процесс); установлено, что компонента (B_iV_{Si}), представляющая собой центр симметрии C_{3v} , формирующийся преимущественно в кристаллическом направлении [111], ускоряет диффузию в этом направлении, что подтверждено экспериментально [4,5].

В случае диссоциативно-вакансионного механизма имеет место взаимодействие примесного атома бора с вакансией по следующим реакциям [5]:

$$B_{S}^{-} + V_{Si}^{+} \to V_{Si}^{0} + B_{S}^{0},$$
 (3)

$$B_{S}^{0} + V_{Si}^{0} \to (B_{i}V_{Si})^{-} + V_{Si}^{0} + h \to (B_{i}V_{Si})^{-} + V_{Si}^{+} \to V_{Si}^{0} + B_{S}^{0}.$$
 (4)

Согласно [5], вакансии $V_{\rm Si}^+$, как центры симметрии D_{2d} с преимущественным направлением движения в кристалле [100], стимулируют диффузию В именно в этом направлении, что также подтверждено экспериментально [5].

4.2.2. Диссоциативный механизм диффузии. В основе диссоциативного механизма диффузии принята идея одновременного взаимодействия атомов замещения в концентрации N_S , атомов внедрения — N_i и вакансией — N_V . Уравнения диффузии в общем виде для этих составляющих имеют вид [22], например для N_i :

$$\frac{dN_i}{dt} = \frac{d}{dt} \left[D_i \left\{ \frac{dN_i}{dx} \pm ZN_i E \right\} \right] + \left[K_1 N_S - K_2 N_i N_v \right] - K_i (N_i - N_{i0}), \quad (5)$$

где D_i — коэффициент диффузии, Z — заряд диффундирующего атома, K_i — коэффициент изменения концентрации межузельных атомов, N_{i0} — исходная концентрации межузельных атомов, E — электрическое поле. Фигурными скобками в уравнении (5) выделены диффузионный (градиентный) и дрейфовый потоки, квадратными скобками — потоки диссоциации (генерации) и ассоциации (рекомбинации) диффундирующих частиц и круглыми скобками — стоки диффундирующих частиц за счет дефектов кристаллической решетки материала.

В уравнениях типа (5) предполагается, что скоростью диффузии можно управлять не только температурой (*T*), градиентом концентрации (dN/dx), электрическим полем (*E*), но и скоростью диссоциации (генерации) и ассоциации (рекомбинации) диффундирующих частиц путем воздействия другими факторами, такими как свет (hv), радиация (α, β, γ), ионная имплантация [2,13]. В этом случае существенную роль играют возбуждение электронной подсистемы и перезарядка атомов внедрения, замещения и вакансий. На основе модели диссоциативного механизма объяснены основные закономерности и особенности градиентной диффузии и стимулированной диффузии различных примесей в Si, GaAs, InP и других полупроводниках [2,12,13].

Модели стимулированной диффузии Р и В в системах (фосфоросиликатное стекло)–Si и (боросиликатное стекло)–Si

На основе рассмотренных выше механизмов диффузии разработаны различные физико-математические модели диффузии [2,12,13,19–25]. Но применительно к нашим экспериментальным результатам лучше подходят две модели: парная модель (pair model) вакансионномежузельной диффузии [24] и диффузия с непостоянными параметрами [2].

5.1. Парная модель вакансионно-межузельной диффузии

Для объяснения экспериментальных данных диффузии Р в Si воспользуемся парной моделью вакансионномежузельной диффузии, предложенной авторами [24,25] со следующими эффективными коэффициентами диффузии:

$$D_{\mathbf{P}^{+},I}^{\text{eff,eq}} = D_{(\mathbf{P}I)^{0}} (k_{\mathbf{P}/I}^{f} / k_{\mathbf{P}/I}^{b})^{i} C_{I}^{\text{eq},i} \exp(\eta - \eta^{i})(1+A), \quad (6)$$

$$D_{\mathbf{P}^+,V}^{\text{eff,eq}} = \left\{ D_{(\mathbf{P}V)^0} + D_{(\mathbf{P}V)} - \exp[\eta + (\varepsilon_c - \varepsilon_{(\mathbf{P}V)^-})/kT] \right\} \times (k_{\mathbf{P}/V}^f/k_{\mathbf{P}/V}^b)^i C_V^{\text{eq},i} \exp(\eta - \eta^i)(1+A),$$
(7)

где $D_{P^+}^{\text{eff}}, D_{P^+,V}^{\text{eff}}, D_{P^+,I}^{\text{eff}}$ — эффективные коэффициенты диффузии атомов фосфора, пары фосфор-вакансия (P–V) и пары фосфор-междоузлие (P–I); С — концентрация дефектов, обозначенных нижним индексом; $A = C_{P^+}/\sqrt{C_{P^+}^2 + 4n_i^2}$ — параметр, характеризующий эффект воздействия внутреннего электрического поля на диффузию примеси, n_i — концентрация собственных носителей; $D_{(PI)^0}, D_{(PV)^0}$ — коэффициенты диффузии в равновесном состоянии пар дефектов, обозначенных нижними индексами; $D_{(PV)}$ — то же в неравновесном состоянии; $k_{P/I}^{f}, k_{P/I}^{b}, k_{P/V}^{f}, k_{P/V}^{b}$ — константы скорости рекомбинации и генерации; $\eta = (\varepsilon_{\rm F} - \varepsilon_c)/kT, \varepsilon_{\rm F}, \varepsilon_c$ уровни энергии Ферми и дна зоны проводимости; $\varepsilon_{(P,V)^-}$ — энергетический уровень комплекса (PV)⁻, η^{i} — приведеный уровень Ферми в собственном Si. Верхний индекс "еq" обозначает равновесное состояние, "*i*" — собственный кристалл. Авторами [24] рассчитаны диффузионные профили концентрации C(x) для 4 различных моделей парной диффузии: примесь–вакансия, примесь–междоузлие, собственная диффузия и диффузия в условиях окисления.

Из сравнения их расчетных профилей C(x) с нашими экспериментальными данными на рис. 1 следует, что более удовлетворительное совпадение имеется для первой модели, учитывающей взаимодействие диффундирующей примеси с неравновесными вакансиями. Кроме того, как следует из уравнений (6) и (7), на процесс диффузии можно воздействовать не только температурой, но и другими факторами, влияющими на уровень Ферми, перезарядку диффундирующих частиц и скорости генерации/рекомбинации, которые обычно имеют место при фотонном отжиге.

Следовательно, можно сделать вывод, что стимулированная диффузия P в системе PSG–Si при импульсном фотонном отжиге обусловлена диссоциативным механизмом диффузии в условиях генерации неравновесных вакансий в приповерхностной области кристалла. Она может быть описана моделью вакансионнопримесного взаимодействия [24] с учетом уменьшения энергии образования вакансий при высоких концентрациях примеси $\Delta E_{V^-}^f = (b_V C_{P^+})^2$, где b_V — коэффициент пропорциональности, а также изменения и вакансий $k_{P/V}^f$, $k_{P/V}^b$ и с учетом изменения уровня Ферми $\eta = (\varepsilon_F - \varepsilon_c)/kT$ при воздействии тепла и света.

5.2. Модель диффузии с переменными параметрами

Экспериментально установлено, что при кратковременном отжиге диффузия Р и В в системах PSG(BSG)– Si протекает с переменными параметрами [2,14]. Наиболее наглядно это показано прецизионным методом SIMS [14]. В частности, показано, что диффузия бора в системе BSG–SiO₂–Si при БТО протекает в условиях временной зависимости поверхностной концентрации $N_0(t)$ и концентрационной зависимости коэффициента диффузии D(N).

Используя эти особенности, мы моделировали диффузию В в Si путем решения уравнения диффузии численным методом при различных зависимостях $N_s = N_1 \exp(a\sqrt{t})$ и $D = D_1 \exp(1 - x/x_0)$, где N_s — поверхностная концентрация. Некоторые расчетные профили диффузии представлены на рис. 4 (пунктир, кривые 1-3) для сравнения с экспериментальными

Рис. 4. Экспериментальные [14] (сплошные линии) и расчетные диффузионные профили В в Si (пунктир, кривые *I*-3) при $N_s(t) = N_1 \exp(a\sqrt{t})$ и $D(N) = D_1 \exp(1 - x/x_0)$.

данными [14]. Заметно удовлетворительное согласие расчетных и экспериментальных данных, особенно при высоких концентрациях (кривая 3).

6. Заключение

1. Получены мелкие и сверхмелкие n^+-p - и p^+-n переходы методом стимулированной диффузии Р из фосфоро-силикатного (PSG) и В из боросиликатного (BSG) стекол в Si при импульсном фотонном отжиге. Электрические, фотоэлектрические и оптические свойства свидетельствуют об удовлетворительном качестве полученных переходов. Однако эффективность переходов в качестве фотоэлементов в значительной степени зависит от оптимальных режимов проведения диффузии и качества омических контактов.

2. Выявлены особенности стимулированной диффузии Р и В в системах PSG–Si и BSG-Si. Главные особенности заключаются в увеличении коэффициента диффузии на 1–2 порядка, сложной форме профилей N(x, t), временной зависимости поверхностной концентрации примеси бора $N_s(t)$ и концентрационной зависимости коэффициента диффузии D(N).

3. Рассмотрены наиболее вероятные механизмы и модели стимулированной диффузии в приповерхностной области кристаллов кремния при импульсном фотонном отжиге в системах PSG(BSG)–Si: для Р — вакансионно-межузельная парная модель [24] на основе диссоциатив-

ного механизма диффузии; для В — модель диффузии с учетом временной зависимости поверхностной концентрации примеси $N_s(t)$ и концентрационной зависимости коэффициента диффузии D(N) или зависимости $D(1 - x/x_0)$.

4. Механизмы диффузии P и B в системах PSG(BSG)-SiO₂-Si при фотонном или быстром термическом отжиге весьма сложные и нуждаются в дополнительных исследованиях.

Авторы выражают глубокую благодарность рецензенту первого варианта данной статьи за ценные советы, которые способствовали значительному улучшению качества этой работы.

Список литературы

- H. Баграев, А.Д. Буравлев, Д.К. Клячкин, А.М. Маляренко, С.А. Рыков. ФТП, 34 (8), 725 (2000).
- [2] S.T. Şişianu. Tehnologii neconvenţionale în microelectronică cu tratament fotonic şi difuzie stimulată (Chişinău, Tehnica U.T.M., 1998).
- M. Drăgănescu. Proc. of 1997-International Semiconductor Conference, 20th Edition (Sinaia, Romania, 1997).
- [4] Н.Т. Баграев, Д.К. Клячкин, В.Л. Суханов. Письма ЖТФ, 17, 42 (1991).
- [5] А.А. Андронов, Н.Т. Баграев, Д.К. Клячкин, А.М. Маляренко, С.В. Робозеров. ФТП, **33**(1), 58 (1999); ФТП, **32**(2), 137 (1998).
- [6] A. Bousetta, J.A. Van der Berg, D. Armour, P.C. Zalm. Appl. Phys. Lett., 58 (15), 1626 (19991).
- [7] Л.В. Докукина, С.И. Кондратенко. Электронная промышленность, № 1, 62 (1992).
- [8] A.Yu. Kuznetsov, M. Janson, A. Hallin, B.G. Svensson, A. Nylandsted-Larsen. Nucl. Instr. Math. B, 148, 279 (1999).
- [9] H.B. Erzgreber, P. Zaumseil, E. Bugiel, K. Tittelbach-Helmrick, F. Richter, D. Pankin, M. Trapp. J. Appl. Phys., Pt. 1, 72 (1) 73 (1992).
- [10] Т.Д. Джафаров. Фото-стимулированные атомные процессы в полупроводниках (М., Энергоатомиздат, 1984).
- [11] D.C. Schmidt, B.G. Svensson, J.L. Lindstrom, S. Godey, E. Nysocnzok, J.F. Barbat, C. Blanchard. Mater. Sci. Engin. B, 57, 161 (1999).
- [12] И.К. Синишук, Г.Е. Чайка, Ф.С. Шишияну. ФТП, 12 (4), 674 (1985).
- [13] T.S. Shishiyanu, I.K. Sinischiuk, S.T. Shishiyanu. Int. J. Electron., 78 (4), 699 (1995).
- [14] M. Miyake. J. Electrochem. Soc., 138 (10), 901 (1991).
- [15] B. Hartiti, A. Slaoni, I.C. Muller, R. Stuck, P. Siffert. J. Appl. Phys., **71** (11), 5474 (1992).
- [16] О.И. Величко, В.А. Лабунов. Микроэлектроника, 14 (6), 542 (1986).
- [17] Ad. Agarwal, D.H. Eaglesham, H.J. Gassmann, L. Pelaz, S.B. Herner, D.C. Jacobson, T.E. Haynes. Lecture Tu-1430, *Modeling enhanced diffusion of implanted dopants*. http: //www.ihp-microelectronics.com/chipps/Djpg/Agarwal.html.
- [18] I.M. Dharmadasa, M. Ives, J.S. Brooks, G.F. France, S.J. Brown. Semicon. Sci. Technol., 10, 369 (1995).
- [19] S.M. Hu. J. Appl. Phys., 45, 1567 (1974).
- [20] R.B. Fair, J.C.C. Tsai. J. Electrochem. Soc., 124, 1107 (1977).
- [21] R.B. Fair. Diff. and Defect Data, **37**, 1 (1984).

616

Физика и техника полупроводников, 2002, том 36, вып. 5

617

- [22] M.R. Pinto, D.M. Baulin, C.S. Rafferty, R.K. Smith, J.W.M. Coughran, I.C. Kizilyally, M.J. Thomas. In: IEDM-92, p. 923.
- [23] M. Uematsu. Japan. J. Appl. Phys., 38, 6188 (1999).
- [24] M. Yoshida, M. Morooka, M. Takahashi, H. Tomokage. Japan. J. Appl. Phys., 39, 2483 (2000).
- [25] M. Yoshida, M. Takahashi, H. Tomokage. Japan. J. Appl. Phys., 38, 36 (1999).

Редактор Т.А. Полянская

Shallow p-n junctions in Si prepared by pulse photon annealing

S.T. Şişianu, T.S. Şişianu, S.K. Railean

Technical University of Moldova, 2012 Chisinau, Republic of Moldova

Abstract Shallow and superthin junctions have been obtained by stimulated diffusion of *P* from phosphorous-silicate glass and B from boron-silicate glass in Si during pulse photon annealing. A study has been made of their electrical, photoelectric and optical properties. Peculiarities of the surface stimulated diffusion of P and B in Si under photon annealing have been found. The results obtained are being discussed with regard of different diffusion mechanisms — the kick-out, vacancy–interstitial and dissociative ones; the distribution profiles N(x, t) are interpreted by a pair model of vacancy–interstitial diffusion and the model of stimulated diifusion taking into consideration the time dependence of the surface impurity concentration and the concentration dependence of the diffusion coefficient.