Фотолюминесценция ($\lambda = 1.3$ мкм) при комнатной температуре квантовых точек InGaAs на подложке Si (100)

© Т.М. Бурбаев, И.П. Казаков[¶], В.А. Курбатов, М.М. Рзаев, В.А. Цветков, В.И. Цехош

Физический институт им. П.Н. Лебедева Российской академии наук, 119991 Москва, Россия

(Получена 18 октября 2001 г. Принята к печати 30 октября 2001 г.)

На кремниевой подложке с буферным слоем $Si_{1-x}Ge_x$ выращены структуры $GaAs/In_xGa_{1-x}As$ с квантовыми точками, обладающие интенсивной фотолюминесценцией в области 1.3 мкм при комнатной температуре. Процесс выращивания осуществлялся последовательно в двух установках молекулярно-лучевой эпитаксии с перегрузкой структуры через атмосферу. Приводятся результаты исследования процесса роста структуры методом дифракции быстрых электронов.

1. Введение

Прогресс в области информационных технологий во многом определяется развитием оптоэлектроники, где пропускная способность линий передачи информации возрастает на порядки за счет более высокой несущей частоты сигнала. В настоящее время широко применяется оптическое волокно на основе SiO_2 , в котором при длине волны 1.3 мкм отсутствует дисперсия, а при 1.55 мкм потери минимальны. В настоящее время ведется интенсивная разработка светоизлучающих приборов на эти длины волн.

Интегрирование оптических устройств обработки информации в кремниевые интегральные схемы — наиболее естественный путь развития в данном направлении, однако технологические трудности здесь весьма велики. Не удается создать светоизлучающие приборы на основе самого кремния из-за его "непрямозонной" природы. Попытки использования наноостровков Si-Ge, пористого кремния, легирования кремния редкоземельными элементами пока не привели к созданию приборов, так как оптические характеристики этих структур при комнатной температуре неудовлетворительны.

Возможное решение проблемы заключается в использовании прямозонных материалов А^{III}В^V в качестве светоизлучающих элементов, интегрированных на кремниевой подложке. Несмотря на очевидные успехи в технологии гибридных интегральных схем, где готовые приборы, например лазеры, "приклеиваются" на кремниевую подложку, структуры, получаемые в процессе эпитаксиального роста, более перспективны хотя бы потому, что они технологичны при групповых методах изготовления интегральных схем. Получение совершенных эпитаксиальных слоев GaAs на кремнии сталкивается с рядом проблем, таких как высокая плотность дислокаций и возникновение антифазных доменов. Вместе с тем наноостровковые структуры из прямозонного материала на кремниевой подложке практически не исследовались. В работе [1] наноостровки InAs выращивались непосредственно на кремниевой подложке. Структуры обладали люминесценцией в области 1.55 мкм при комнатной температуре.

¶ E-mail: kazakov@sci.lebedev.ru

Fax: (095)1357880

В данной работе предложен новый подход: квантовые точки (КТ) $In_x Ga_{1-x} As$ формировались в матрице GaAs, эпитаксиально выращенной на подложке Si (001) с буферными слоями Si_{1-x}Ge_x.

2. Подготовка образцов

Выращивание структуры проводилось последовательно на двух установках молекулярно-лучевой эпитаксии (МЛЭ). На установке "Катунь" с электроннолучевыми испарителями выращивался буферный слой Si_{1-x}Ge_x, на установке "ЦНА-25" с тигельными молекулярными источниками — активная область структуры GaAs/In_xGa_{1-x}As (КТ). Структура выращивалась на

GaAs, 200 Å, 650°C	
InGaAs quantum dots, 650°C	
GaAs, 2000 Å, 700°C	
Cap Si, 50 Å, 500°C	
Ge, 1500 Å, 500°C	
Si _{0.1} Ge _{0.9} , 500 Å, 250°C	
Si _{0.38} Ge _{0.62} , 1500 Å, 500°C	
Si _{0.38} Ge _{0.62} , 500 Å, 250°C	
Si _{0.7} Ge _{0.3} , 1500 Å, 500°C	
Si _{0.7} Ge _{0.3} , 500 Å, 250°C	
Si, 500 Å, 400°C	
Si, 1000 Å, 750°C	
Substrate Si (001)	

Рис. 1. Схематический разрез структуры, содержащей квантовые точки InGaAs, на подложке Si (001) с многослойным буфером Si_{1-x}Ge_x. Указаны толщины слоев d и температуры T_s , при которых слои выращивались.

Рис. 2. Картины дифракции быстрых электронов на отражение на различных стадиях выращивания гетероструктуры (энергия электронов 15 кэВ, азимут $\langle \bar{1}10 \rangle$): *a* — поверхность подложки Si (001) с выращенными буферными слоями Si/SiGe/Ge/Si после перегрузки через атмосферу из установки "Катунь" в ростовую камеру "ЦНА-25"; *b* — та же поверхость после очистки в потоке Ga; *c* — поверхность буферного слоя GaAs (001) толщиной 2000 Å; *d* — изменение картины дифракции после выращивания слоя квантовых точек InGaAs.

подложке кремния марки КЭФ-4.5 с ориентацией (001) диаметром 76 мм.

Предэпитаксиальная подготовка подложки в установке "Катунь" заключалась в удалении окисного слоя в потоке паров Si при температуре $T_s = 1000^{\circ}$ C (здесь и далее в качестве значения T_s приводятся показания термопары нагревателя подложки). Затем выращивался буферный слой Si толщиной 1000 Å ($T_s = 750^{\circ}$ C) и многослойный буфер $Si_{1-x}Ge_x$ со ступенчатым увеличением содержания Ge. Для достижения более полной релаксации напряжений несоответствия и снижения плотности дислокаций в буферном слое со ступенчатым изменением состава использовался метод, предложенный авторами работ [2,3]. Схематический разрез структуры с указанием состава, толщины слоя и температуры T_s приведен на рис. 1. Каждый слой с определенным содержанием Ge включал подслой толщиной $d = 500 \,\text{\AA}$, выращенный при пониженной температуре, $T_s = 250^{\circ}$ C. Затем температура поднималась до $T_s = 500^{\circ}$ С и наращивалось еще 1500 А материала того же состава. После паузы, необходимой для увеличения потока Ge, таким же образом выращивался следующий слой и т.д. Как видно из приведенной схемы, многослойный буфер Si_{1-x}Ge_x состоял из трех слоев с содержанием Ge x = 0.3, 0.62, 1.0.Для защиты верхнего слоя чистого Ge на поверхность структуры был нанесен тонкий (d = 50 Å) слой Si. Затем структура была перенесена через атмосферу в шлюзовую камеру установки МЛЭ "ЦНА-25", в которой в течение 1 ч был достигнут вакуум выше 10^{-6} Па.

Удаление окисного слоя SiO₂ с поверхности структуры в установке "ЦНА-25" проводилось путем прогрева при $T_s = 800^{\circ}$ С в потоке Ga. Затем выращивалась следующая структура: слой GaAs толщиной d = 2000 Å при $T_s = 700^{\circ}$ С, слой KT In_xGa_{1-x}As (x = 0.5) при $T_s = 650^{\circ}$ С, защитный слой GaAs толщиной d = 200 Å при $T_s = 650^{\circ}$ С. Слой KT выращивался в процессе циклического осаждения пар слоев InAs/GaAs, продолжительность осаждения каждого слоя 2 с. Эффективная толщина слоя KT составила 30 Å.

Рис. 3. Спектры фотолюминесценции гетероструктуры с квантовыми точками InGaAs, выращенной на подложке Si $(001)/Si_{0.7}Ge_{0.3}/Si_{0.38}Ge_{0.62}/Si_{0.1}Ge_{0.9}/Ge/GaAs, при 77 (1) и 300 K (2).$

Процессы очистки поверхности подложки и выращивания гетероструктуры контролировались методом дифракции быстрых электронов на отражение (ДБЭ) и записывались на жесткий диск персонального компьютера системой регистрации и обработки изображений ДБЭ. На рис. 2 приведены картины ДБЭ на различных стадиях выращивания гетероструктуры. После перегрузки кремниевой подложки с буферными слоями Si_{1-x}Ge_x в ростовую камеру установки "ЦНА-25" поверхность была покрыта слоем естественного окисла (рис. 2, a). Очистка в слабом потоке Ga с одновременным нагревом до $T_s = 800^{\circ}$ С приводила к удалению окисного слоя, что подтверждается возникновением реконструкции (2×1) , характерной для чистой поверхности кремния (рис. 2, b). Практически сразу после начала роста слоя GaAs на поверхности структуры установилась реконструкция (2×4) . На рис. 2, *с* представлена картина ДБЭ от поверхности буферного слоя GaAs (001) толщиной 2000 Å, выращенного при $T_s = 700^{\circ}$ C. Наличие вытянутых тяжей в азимуте (110) свидетельствует о достаточно высоком качестве слоя GaAs. После выращивания слоя квантовых точек In_{0.5}Ga_{0.5}As на картине ДБЭ помимо тяжей присутствуют точечные рефлексы, характерные для кристаллических поверхностей с трехмерными островками (рис. 2, d). Анализ положения максимумов интенсивности стержней и точек дает соотношение между постоянными решеток InGaAs и GaAs $a_{\text{InGaAs}}/a_{\text{GaAs}} = 1.034$. Это позволяет оценить состав твердого раствора $In_xGa_{1-x}As$ как $x \approx 0.5$, без учета напряжений, возникающих из-за несоответствия параметров решетки КТ и матрицы GaAs.

Спектры фотолюминесценции (ФЛ) измерялись при температурах 77 и 300 К с использованием монохроматора МДР-2. Источником возбуждения служил полупроводниковый лазер с длиной волны излучения $\lambda = 0.66$ мкм (энергия кванта hv = 1.87 эВ). Максимальная мощность излучения была равна 70 мВт, плотность мощности излучения на образце составляла не более $4 \text{ Br}/\text{cm}^2$. Излучение от образцов регистрировалось с помощью охлаждаемого жидким азотом германиевого p-i-n-фотодиода.

3. Результаты и обсуждение

При азотной температуре в спектрах фотолюминесценции I(hv) (рис. 3) наблюдаются линии как от квазидвумерного (2D) смачивающего слоя (при энергии hv = 1235 мэB), так и от трехмерных (3D) квантовых точек InGaAs (максимум линии при энергии $h\nu = 1045 \,\text{мэB}$). При повышении температуры до комнатной интенсивность излучения КТ падает примерно в 4 раза. Вследствие температурного изменения ширины запрещенной зоны GaAs положение линии при этом смещается в красную область спектра. Большую ширину линий излучения КТ (~ 200 мэВ на полувысоте) в спектрах ФЛ можно объяснить неоднородностями островков InGaAs как по размеру, так и по составу. Как показали исследования, проведенные на атомносиловом микроскопе, буферный слой Ge и защитный слой GaAs имеют рельефную поверхность. Это дает основания предполагать, что выращивание КТ InGaAs проводилось так же на рельефной поверхности GaAs. В работах [4,5] подобный спектр ФЛ наблюдался на образцах со смешанной (2D-3D)-структурой слоя InAs в матрице GaAs. (2D-3D)-структура слоя InGaAs весьма вероятна и в наших образцах, учитывая неоднородность толщины слоя из-за различного наклона отдельных участков рельефной поверхности подложки к направлению падения молекулярных пучков. Известно также, что сегрегация в твердых растворах, и в частности InGaAs, на рельефной поверхности приводит к латеральной неоднородности по составу в результате различной скорости поверхностной диффузии компонентов — адатомов к ступеням, концентрация которых больше на наклонных к сингулярным плоскостям участках поверхности [6]. Наличие подобной смешанной (2D-3D)-структуры слоя InGaAs подтверждается также наблюдаемыми in situ картинами ДБЭ (рис. 2, d).

4. Заключение

В настоящей работе предложен и реализован способ выращивания ансамбля квантовых точек InGaAs на кремниевой подложке путем создания переходного буферного слоя Si/Si_{1-x}Ge_x / Ge / GaAs. Получены структуры с интенсивной фотолюминесценцией при комнатной температуре в важной для практических применений области спектра 1.3 мкм.

Показана возможность использования в качестве подложки для эпитаксии GaAs структуры $Si/Si_{1-x}Ge_x$, выращенной в другой установке, после ее перегрузки через атмосферу.

В отличие от формирования КТ А^{III}В^V непосредственно в кремниевой матрице предлагаемый способ обладает следующими преимуществами.

1) Имеется возможность гибкого управления процессом формирования КТ путем изменения напряжения несоответствия, зависящего от конструкции буферного слоя Si/Si_{1-x}Ge_x/Ge/GaAs.

2) Подавляется неконтролируемое легирование КТ примесью Si из окружающей матрицы.

3) Изготовление структур осуществляется на обычных установках МЛЭ и не требует разработки специальных ростовых камер, имеющих молекулярные источники как для выращивания слоев соединений $A^{III}B^V$, так и слоев $Si_{1-x}Ge_x$.

Работа выполнена при частичной поддержке РФФИ (проекты № 01-02-17732, № 00-02-16470), Научнотехнических программ "Физика твердотельных наноструктур" (проекты № 97-1050, № 2000-2Ф) и "Перспективные технологии и устройства микро- и наноэлектроники" (проект № 1), а также Программы государственной поддержки ведущих научных школ РФ (грант № 00-15-96568).

Список литературы

- G.E. Cirlin, V.N. Petrov, V.G. Dubrovsky, S.A. Masalov, A.O. Golubok, N.I. Komyak, N.N. Ledentsov, Zh.I. Alferov, D. Bimberg. Techn. Phys. Lett., 24, 10 (1998).
- [2] H. Chen, L.W. Guo, Q. Cui, Q. Hu, Q. Huang, J.M. Zhou. J. Appl. Phys., 79, 1167 (1996).
- [3] C.S. Peng, Z.Y. Zhao, H. Chen, J.H. Li, Y.K. Li, L.W. Guo, D.Y. Dai, Q. Huang, J.M. Zhou, Y.H. Zhang, T.T. Sheng, C.H. Tung. Appl. Phys. Lett., **72**, 3160 (1998).
- [4] J.M. Gerard, J.B. Genin, J. Lefebre, J.M. Moison, N. Lebouche, F. Barthe, J. Cryst. Growth, 150, 351 (1995).
- [5] D.I. Lubyshev, P.P. Gonzalez-Borrero, E. Marega, jr., E. Petitprez, P. Basmaji. J. Vac. Sci. Technol. B, 14, 2212 (1996).
- [6] K. Kamath, J. Phillips, J. Singh, P. Bhattacharya. J. Vac. Sci. Technol. B, 14, 2312 (1996).

Редактор Л.В. Шаронова

Room temperature photoluminescence $(\lambda = 1.3 \,\mu\text{m})$ of InGaAs quantum dots on Si (001) substrate

T.M. Burbaev, I.P. Kazakov, V.A. Kurbatov, M.M. Rzaev, V.A. Tsvetkov, V.I. Tsekhosh

P.N. Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia

Abstract A heterostructure with $GaAs/In_xGa_{1-x}As$ quantum dots has exhibited intense photoluminescence in the range of $1.3 \,\mu\text{m}$ at room temperature. It was grown on Si (001) substrate with Si_{1-x}Ge_x buffer layer. The growth process was performed consecutively in two molecular beam epitaxy systems with over loading through out the atmosphere. High energy electron diffraction investigations are presented.