Обработка поверхности кремния импульсной азотной плазмой

© Ф.Б. Баимбетов, Б.М. Ибраев, А.М. Жукешов[¶]

Казахский государственный национальный университет им. аль-Фараби, 480012 Алматы, Республика Казахстан

(Получена 26 марта 2001 г. Принята к печати 11 мая 2001 г.)

Методами инфракрасной спектроскопии и электронной микроскопии исследована структура поверхности монокристаллов кремния после плазменной обработки. Показано, что при облучении импульсной азотной плазмой в приповерхностной области формируется нитрид кремния.

Диэлектрические слои двуокиси и нитрида кремния, получаемые стандартным методом ионной имплантации, широко используются в технологии полупроводниковых приборов. Относительно новым направлением ионного синтеза является имплантация с использованием импульсных ионных пучков [1]. Использование таких пучков позволяет в некоторых случаях провести имплантацию и отжиг полупроводников в одном цикле.

В дополнение к импульсным методам в качестве альтернативного в данной работе предлагается метод импульсной плазменной обработки кремния. Цель данной работы заключается в определении возможности применения импульсной плазменной обработки для создания нитридного слоя на поверхности кремния. Обработка проводилась на импульсном плазменном ускорителе (ИПУ) [2]. ИПУ формирует плазменный поток с температурой до 100 эВ, длительностью импульса 20 мкс. Разрядный ток ИПУ может достигать значения 400 кА, при этом плазменный поток движется с оскоростью ~ 10⁵ м/с.

Поверхность (100) монокристаллов кремния КДБ-10 обрабатывалась импульсным потоком азотной плазмы. Исходные образцы располагались в откачиваемой камере с остаточным давлением 10^{-3} Торр при комнатной температуре. Измерения плотности падающей энергии проводились термопарными датчиками, расположенными в непосредственной близости от образца. Для исследования обработанных плазмой образцов применялись методы инфракрасной (ИК) спектроскопии и электронная микроскопия. Измерения ИК спектров поглощения обработанных образцов проводились на спектрометре Nicolet-560. Типичное разрешение прибора 4 см⁻¹.

На рис. 1 приведены разностные спектры поглощения обработанных азотной плазмой образцов кремния по отношению к необработанным. Кривые 1-4 соответствуют образцам, обработанным с плотностью энергии 20, 30, 38 и 48 Дж/см² соответственно относительно необработанного образца. Как известно, валентные и деформационные колебания связи Si–N лежат в области 800–830 и 500 см⁻¹ [3,4]. Анализ положения и формы полос поглощения на рис. 1 позволяет наличие пика при 800 см⁻¹ связать с формированием нитрида кремния. Отсутствие четко выраженной полосы при 500 см⁻¹ вызвано на-

личием фона от паров воды в указанном диапазоне. Следует отметить, что интенсивность основной полосы увеличивается с ростом плотности воздействия. При плотности, меньшей 30 Дж/см², формирование связей Si—N не происходит. После удаления приповерхностного слоя толщиной 20 мкм полоса, связанная с нитридом кремния, исчезает.

Для проверки предположения о формировании связей Si-N при обработке азотной плазмой были проведены исследования по обработке другими газами. На рис. 2 представлены ИК спектры, снятые после обработки образцов кремния аргоновой плазмой (кривая 1) и плазмой углекислого газа (кривая 2). Параметры обработки аргоном и углекислым газом примерно такие же, как и при азоте: 32 и $45 \, Д$ ж/см² соответственно. Из экспериментальных данных на рис. 2 видно, что в области $800 \, \text{сm}^{-1}$ отсутствует какая-либо особенность, наблюдается только поглощение самого кремния. Полосы поглощения при 1100 и $605 \, \text{сm}^{-1}$ присутствуют на всех образцах. По-видимому, за их происхождение ответственны поверхностно адсорбированные молекулы кислорода и углекислого газа.

Известно, что при кристаллизации аморфного нитрида кремния основная полоса ИК поглощения расщепляется, что связано со структурной перестройкой и образованием кристаллической фазы [3]. Как показано в работе [5],

Рис. 1. Разностные спектры ИК поглощения для образцов кремния, обработанных с плотностью энергии 20 (1), 30 (2), 38 (3), 48 Дж/см² (4), относительно необработанного образца.

[¶] E-mail: anuar_zhukeshov@mail.ru

Fax: (3272) 503979

Рис. 2. Разностные спектры ИК поглощения для образцов кремния: *1* — обработанный аргоном (32 Дж/см²), *2* — обработанный углекислотой (45 Дж/см²), *3* — обработанный азотом, неотожженный, *4* — обработанный азотом (48 Дж/см²), после отжига при 750°С.

для кристаллизации аморфных слоев нитрида кремния необходим отжиг при температуре не ниже 600°С. На рис. 2 приведены спектры обработанных азотной плазмой образцов кремния до и после отжига (кривые *3* и *4* соответственно). Отжиг проводился в вакууме (остаточное давление 10^{-2} Торр) при температуре 750°С в течение 30 мин. Как видно, проведенный отжиг незначительно влияет на форму и положение полосы 800 см⁻¹, связываемой с нитридом кремния. Следует отметить, что общее поглощение несколько уменьшается, что связано с частичным отжигом дефектов.

Как показали исследования микроструктуры поверхности в растровом электронном микроскопе, при большой плотности воздействия происходит плавление поверхности образцов и формируется своеобразный рельеф [6]. Образование рельефа, по-видимому, обусловлено неравновесными термическими процессами, характерными для импульсного воздействия. Наличие больших градиентов температуры и давления во время обработки приводит к образованию дефектов на поверхности и в объеме кристалла.

Таким образом, с определенной достоверностью можно утверждать, что при обработке импульсным потоком азотной плазмы в приповерхностном слое образуется соединение азота с кремнием. Нитрид кремния образуется только при относительно больших плотностях энергии (более 30 Дж/см²). Зависимость формирования нитрида кремния от плотности воздействия имеет монотонный характер.

Список литературы

 Ф.Ф. Комаров, А.П. Новиков, В.С. Соловьев, С.Ю. Ширяев. Дефекты структуры в ионно-имплантированном кремнии (Минск, Изд-во БГУ, 1990).

- [2] Ф.Б. Баимбетов, Б.М. Ибраев. В сб.: Ядерная и радиационная физика (Алматы, Изд-во ИЯФ НЯЦ РК, 1998) т. 2, с. 218.
- [3] Ю.Н. Волгин, Ю.И. Уханов. Опт. и спектр., 38 (4), 727 (1975).
- [4] В.И. Бачурин, П.А. Лепшин, В.К. Смирнов, А.Б. Чурилов. Изв. РАН. Сер. физ., 62 (4), 703 (1998).
- [5] Н.Е. Лобанова, П.А. Павлов, Д.И. Тетельбаум, Л.В. Потапова. ФТП, 23 (12), 2149 (1989).
- [6] B.M. Ibraev, A.M. Zhukeshov. Mater. 3th Int. Conf. Plasma Physics and Plasma Technology (Minsk, Belarus, 2000) v. 2, p. 456.

Редактор Л.В. Шаронова

Pulsed nitric plasma processing of silicon surface

F.B. Baimbetov, B.M. Ibraev, A.M. Zhukeshov

Kazakh National State University, 480012 Almaty, Kazakhstan

Abstract Infrared spectroscopy and electron microscopy methods are applied to investigate structure of the silicon surface after plasma treatment. It is shown that after the treatment by pulsed nitric plasma in a sub-surface area is formed silicon nitride.