Концентрационная зависимость краевой фотолюминесценции полуизолирующего нелегированного GaAs

© В.Ф. Коваленко, М.Б. Литвинова, С.В. Шутов

Институт физики полупроводников Национальной академии наук Украины, 73008 Херсон, Украина

(Получена 2 октября 2000 г. Принята к печати 4 июня 2001 г.)

Изучены зависимости спектрального положения максимума полосы краевой фотолюминесценции, ее полуширины, удельного сопротивления, подвижности носителей заряда в кристаллах полуизолирующего нелегированного GaAs от концентрации углерода $N_{\rm C}$ при 77 K ($3.0 \cdot 10^{15} \leq N_{\rm C} \leq 4.3 \cdot 10^{16} \,{\rm cm}^{-3}$). Наблюдаемые зависимости объяснены характером взаимодействия носителей заряда с ионизированными атомами примесей и со структурными дефектами.

Интерес к исследованию полуизолирующего нелегированного (ПИН) GaAs обусловлен использованием его при производстве интегральных схем, СВЧ приборов. Кристаллы ПИН GaAs содержат от $\approx 2 \cdot 10^{14}$ до 3 · 10¹⁶ см⁻³ атомов углерода [1-3]. Углерод является основной фоновой примесью, играющей важную и неоднозначную роль в формировании электрофизических свойств кристаллов. С одной стороны, уменьшение его концентрации (N_C) приводит к увеличению подвижности электронов [3]. С другой стороны, атомы углерода, занимая узлы мышьяка и являясь мелкими акцепторами, участвуют в формировании полуизолирующих свойств материала, обеспечивая электрическую компенсацию мелких (Si, S) [4] и глубоких (*EL*2) [1,2] доноров, что заставляет поддерживать концентрацию углерода на уровне, соответствующем уровню загрязнения материала донорными примесями и дефектами.

Ранее изучение краевой фотолюминесценции (ФЛ) кристаллов ПИН GaAs, связываемой с аннигиляцией экситонов и прямой рекомбинацией свободных электронов и дырок [5,6], ограничивалось исследованиями кристаллов с тем или иным конкретным значением N_C [1]. Между тем возникновение и усиление межпримесного взаимодействия и возрастание роли рассеяния при увеличении концентрации углерода в указанных пределах может приводить к изменению характеристик ФЛ. Поэтому представляет интерес исследование краевой ФЛ во взаимосвязи с электрофизическими свойствами в широком интервале изменения концентрации углерода.

В настоящей работе приведены результаты такого изучения.

Методика эксперимента

Исследования зависимостей энергии максимума $hv_{\rm m}$ и полуширины W полосы краевой ФЛ от содержания углерода проводили на выращенных методом Чохральского специально не легированных кристаллах GaAs, в которых концентрация этой примеси изменялась в интервале $3 \cdot 10^{15} \le N_{\rm C} \le 4.3 \cdot 10^{16} \,{\rm сm}^{-3}$. Величину $N_{\rm C}$ оценивали по калибровочной зависимости $I_{1.49}/I_{1.51} = f(N_{\rm C})$ [7], где $I_{1.49}$ — интенсивность "углеродной" полосы ФЛ

с $hv_{\rm m} \lesssim 1.495$ и $I_{1.51}$ — интенсивность исследуемой полосы краевого излучения с $hv_{\rm m} \lesssim 1.510$ эВ.

Удельное сопротивление ρ кристаллов при 300 К измеряли двухзондовым методом, подвижность основных носителей заряда μ определяли из измерений коэффициента Холла при 300 К. Тип проводимости определяли по знаку термоэдс.

Спектры ФЛ образцов при 77 К измеряли на установке СДЛ-1 в интервале длин волн 0.8–1.2 мкм. Источником возбуждения ФЛ служил аргоновый лазер ($\lambda = 0.488-0.514$ мкм) с интенсивностью возбуждающего излучения $I_0 = 3 \cdot 10^{21}$ см⁻² · с⁻¹. Фотоприемником служил фотоэлектронный умножитель ФЭУ-62.

Концентрацию глубоких донорных центров *EL2* в кристаллах определяли из измерений при 300 К оптического поглощения в диапазоне 1.0–1.2 мкм с помощью спектрофотометра СФ-26. В исследованных образцах концентрация этих центров не зависела от $N_{\rm C}$ и составляла $N_{EL2} \cong (1-2.5) \cdot 10^{16} \, {\rm cm}^{-3}$.

Экспериментальные результаты

Спектр ФЛ исследованных кристаллов содержал полосу краевого излучения и более длинноволновую, отстоящую от краевой на 15–17 мэВ, полосу меньшей интенсивности, связанную с участием в излучательных переходах центров C_{As} [1]. На рис. 1 представлена форма спектра излучения кристаллов с различной концентрацией атомов углерода, а на рис. 2 — зависимости энергии максимума hv_m и полуширины W краевой полосы от N_C .

С ростом концентрации углерода в кристаллах с $N_{\rm C} \lesssim 1.4 \cdot 10^{16} \, {\rm cm}^{-3}$ наблюдалось незначительное возрастание *hv*_m в интервале 1.509-1.510 *э*B; при $N_{\rm C} > 1.4 \cdot 10^{16} \, {\rm сm}^{-3}$ происходило существенное уменьшение энергии максимума до значения $h\nu_{\rm m}\cong 1.507\,$ эВ при $N_{\rm C}\cong 3\cdot 10^{16}\,{
m cm^{-3}};$ в интервале $3 \cdot 10^{16} < N_{\rm C} \le 4.3 \cdot 10^{16} \, {\rm сm}^{-3}$ имело место некоторое повышение hv_m. С увеличением концентрации углерода полуширина полосы непрерывно возрастала от $W \cong 6.5$ мэВ в наиболее чистых кристаллах до $W \cong 15$ мэВ в кристаллах с наибольшим содержанием углерода за счет расширения преимущественно в низкоэнергетическую область и в меньшей степени — в высокоэнергетическую область. Как видно из рис. 2, смещение $hv_{\rm m}$ в низкоэнергетическую область с ростом $N_{\rm C}$ сопровождается более существенным увеличением W.

Электрофизические свойства исследованных кристаллов также зависели от содержания углерода. Кристаллы с $N_{\rm C} \lesssim 3 \cdot 10^{16} \,{\rm cm^{-3}}$ имели электронный тип проводимости, а с $N_{\rm C} > 3 \cdot 10^{16} \,{\rm cm^{-3}}$ — дырочный. На рис. 3 приведены зависимости удельного сопротивления ρ и подвижности μ от содержания угле-

Рис. 1. Спектры ФЛ кристаллов с различной концентрацией углерода $N_{\rm C}$. T = 77 K, $N_{\rm C}$, см⁻³: $1 - 4 \cdot 10^{15}$; $2 - 1.4 \cdot 10^{16}$; $3 - 3 \cdot 10^{16}$.

Рис. 2. Зависимость энергии максимума $hv_{\rm m}$ и полуширины *W* полосы краевой ФЛ от концентрации углерода. T = 77 К.

Физика и техника полупроводников, 2002, том 36, вып. 2

Рис. 3. Зависимость удельного сопротивления (1) и подвижности носителей заряда (2) от концентрации углерода. T = 300 К.

рода. В кристаллах с $N_{\rm C} \lesssim 2 \cdot 10^{16} \,{\rm cm}^{-3}$ удельное сопротивление не зависело от $N_{\rm C}$ и составляло $\rho \cong 5 \cdot 10^7 - 5 \cdot 10^8 \,{\rm Om} \cdot {\rm cm}$. С увеличением концентрации углерода в интервале $N_{\rm C} > 2 \cdot 10^{16} \,{\rm cm}^{-3} \rho$ уменьшалось до $\approx 10^2 \,{\rm Om} \cdot {\rm cm}$. Подвижность электронов уменьшалась от $\mu \cong 6500 \,{\rm cm}^2/{\rm B} \cdot {\rm c}$ в наиболее чистых кристаллах до $\mu \cong 0$ при $N_{\rm C} \cong (2.5-3) \cdot 10^{16} \,{\rm cm}^{-3}$, при этом наиболее значительное уменьшение подвижности имело место в интервале $1.3 \cdot 10^{16} < N_{\rm C} \lesssim 2.5 \cdot 10^{16} \,{\rm cm}^{-3}$, в котором происходило уменьшение $hv_{\rm m}$. В кристаллах с $N_{\rm C} > 3 \cdot 10^{16} \,{\rm cm}^{-3}$ наблюдалось некоторое возрастание подвижности дырок с ростом $N_{\rm C}$ ($\mu \cong 500 \,{\rm cm}^2/{\rm B} \cdot {\rm c}$ при $N_{\rm C} \cong 4.3 \cdot 10^{16} \,{\rm cm}^{-3}$).

Обсуждение результатов

Положение максимума $h\nu_{\rm m} \cong 1.509 \, {
m sB}$ в наиболее чистых кристаллах свидетельствует о том, что наблюдаемая полоса излучения в них не связана с аннигиляцией экситонов, поскольку разница E_g-hv_m меньше энергии связи экситона [8]. С другой стороны, ширина полосы в этих кристаллах характерна для экситонной излучательной рекомбинации. Эти особенности краевой ФЛ могут быть объяснены следующим образом. Согласно [9], в прямозонных полупроводниках при межзонных излучательных переходах невырожденных электронов и дырок без учета их взаимодействия и рассеяния теоретическая ширина полосы излучения должна быть равной 1.8kT, а энергия максимума — близкой к Eg. При наличии кулоновского взаимодействия межзонную люминесценцию следует рассматривать как результат аннигиляции экситонов, находящихся в состояниях непрерывного спектра. Взаимодействие рекомбинирующих носителей заряда при этом приводит к уменьшению ширины полосы до 0.7kT и сдвигу ее максимума в длинноволновую область на величину, меньшую энергии связи свободного экситона. Рассеяние рекомбинирующих электронов и дырок, обусловливающее вклад в излучение непрямых переходов, при наличии кулоновского взаимодействия дает значения W, промежуточные между приведенными выше.

Близость наблюдаемых величин W в наиболее чистых кристаллах к теоретическому значению полуширины $W \cong 0.7kT$ позволяет предположить о преимущественном вкладе в формирование полосы краевого излучения переходов взаимодействующих носителей заряда, находящихся в состояниях разрешенного спектра. Увеличение hv_m и W при возрастании концентрации углерода в интервале $N_{\rm C} \lesssim 1.4 \cdot 10^{16}$ см⁻³ связано, по нашему мнению, во-первых, с экранированием примесными атомами взаимодействия электронов и дырок и увеличением доли межзонных переходов невзаимодействующих носителей, во-вторых, с увеличением вклада непрямых излучательных переходов, обусловленных рассеянием на ионизированных атомах примесей. Последнее обстоятельство подтверждается расширением полосы в коротковолновую область в указанном интервале увеличения N_C.

Наиболее вероятной причиной изменения $hv_{\rm m}$ и W с ростом концентрации углерода в интервале $N_{\rm C} > 1.4 \cdot 10^{16} \,{\rm cm}^{-3}$ является участие в излучательных переходах состояний "хвостов", образованных у краев разрешенных зон и обусловленных флуктуациями суммарной концентрации N_{Σ} электрически активных примесей и дефектов ($C_{\rm As}$, Si_{Ga}, *EL2* и др.). Известно [10], что в слабо легированных полупроводниках при сильной компенсации неоднородное распределение примесей в объеме обусловливает крупномасштабные флуктуации примесного потенциала в силу слабого экранирования свободными носителями заряда из-за их низкой концентрации.

Мы полагаем, что в исследованных в настоящей работе высокоомных кристаллах параметры хвостов плотности состояний — глубина потенциальных ям γ и их масштаб r — определяются экранированием не свободными электронами, концентрация которых на много порядков меньше N_{Σ} , а примесями и дефектами при их коррелированном распределении.

Оценки параметров r и γ с учетом примесного экранирования, приведенные при $N_{\rm C} = 3 \cdot 10^{16} \,{\rm cm}^{-3}$ и $N_{EL2} = 2 \cdot 10^{16} \,{\rm cm}^{-3}$ (что соответствует минимальному значению $hv_{\rm m}$) по формулам [10]

$$r_i = \sqrt{\frac{\varepsilon kT}{4\pi N_{\Sigma} e^2}},$$
$$\gamma = \frac{e^2}{\varepsilon} \sqrt{N_{\Sigma} r},$$

дают значения $r_i \cong 4 \cdot 10^{-6}$ см и $\gamma \cong 5.3$ мэВ.

При таких параметрах потенциальных ям условие локализации $\hbar^2/m^* \cdot r^2 \ll \gamma$ хорошо выполняется для дырок и плохо — для электронов, из чего следует, что в интервале $N_{\rm C} > 1.4 \cdot 10^{16} \,{\rm cm}^{-3}$ краевая полоса связана главным образом с рекомбинацией нелокализованных электронов с дырками, локализованными в хвостах валентной зоны. Удовлетворительное соответствие разницы между шириной запрещенной зоны GaAs при 77 К ($E_g = 1.5115$ эВ [11]) и измеренным значением $hv_{\rm m}$ при $N_{\rm C} \cong 3 \cdot 10^{16} \,{\rm cm}^{-3}$ ($hv_{\rm m} = 1.5067 \pm 0.0005$ эВ),

равной 4.8±0.5 мэВ, расчетной величине γ подтверждает правильность вывода о механизме излучательных переходов.¹ Тенденция к возрастанию энергии максимума $hv_{\rm m}$ и стабилизация ширины W полосы краевого излучения с увеличением концентрации углерода в интервале $N_{\rm C} > 3 \cdot 10^{16}$ см⁻³, в котором кристаллы приобретали проводимость *p*-типа и становились низкоомными, обусловлена, по-видимому, возрастанием экранирования примесного потенциала свободными дырками с концентрацией p_0 и изменением в результате этого параметров потенциальных ям. Оценка радиуса экранирования ния дырками r_0 , проведенная при $N_{\rm C} = 4 \cdot 10^{16}$ см⁻³, $N_{EL2} = 2 \cdot 10^{16}$ см⁻³, $p_0 = 2 \cdot 10^{16}$ см⁻³ по формуле [10]

$$r_0 = \frac{N_{\Sigma}^{1/3}}{p_0^{2/3}},$$

дает значение $r_0 \cong 5 \cdot 10^{-6}$ см, практически совпадающее с радиусом примесного экранирования r_i при $N_{\rm C} = 3 \cdot 10^{16}$ см⁻³. Это обстоятельство подтверждает предположение об изменении характера экранирования в этой области концентрации углерода. В этой связи нетрудно предугадать характер зависимости $hv_{\rm m}(N_{\rm C})$ с увеличением концентрации углерода при $N_{\rm C} > 4.3 \cdot 10^{16}$ см⁻³. Возрастание концентрации свободных дырок p_0 обусловит полное экранирование флуктуаций примесного потенциала ($r_0 \rightarrow 0$), что приведет к увеличению энергии максимума спектра до значения $hv_{\rm m} \cong 1.510$ эВ и отсутствию зависимости ее от концентрации углерода с дальнейшим увеличением последней, характерным для низкоомных кристаллов GaAs при малых и средних уровнях легирования [9].

В заключение отметим, что наличие в исследованных кристаллах ПИН GaAs флуктуаций примесного потенциала позволяет также связать резкое снижение подвижности электронов с увеличением концентрации углерода в интервале $N_{\rm C}\gtrsim 1.4\cdot 10^{16}\,{\rm cm}^{-3}$ с возрастанием эффективности рассеяния на скоплениях атомов по сравнению с рассеянием на отдельных ионизированных примесных атомах.

Список литературы

- [1] К.Д. Глинчук, В.И. Гурошев, А.В. Прохорович. Оптоэлектрон. и полупроводн. техн., вып. 24, 66 (1992).
- [2] M. Suemitsu, M. Nishijima, N. Miyamoto. J. Appl. Phys., 69, 7240(1991).
- [3] M.W. Duncan, G.H. Westphal, A.J. Purdes. J. Appl. Phys., 66, 2430 (1989).
- [4] Ю.Н. Болышева, М.А. Ильин, А.В. Марков. Высокочистые вещества, № 4, 210 (1989).
- [5] М.И. Калинин, М.Т. Лисица, Ф.В. Моцный. УФЖ, 37 (3), 330 (1992).

¹ В оценке γ имеется неоднозначность, обусловленная различием численных коэффициентов в приводимой в различных работах формуле для γ . Так, оценка γ по формуле [9]: $\gamma = \sqrt{\pi} \frac{e^2}{\epsilon} \sqrt{N \cdot r}$ дает значение $\gamma \cong 9$ мэВ, что несколько ухудшает соответствие между расчетным и измеренным значениями γ , но не исключает его.

177

- [6] М.И. Калинин, М.Т. Лисица, Ф.В. Моцный. УФЖ, 37 (4), 528 (1992).
- [7] К.Д. Глинчук, Н.М. Литовченко, А.В. Прохорович, О.Н. Стрельчук. Оптоэлектрон. и полупроводн. техн., вып. 32, 61 (1997).
- [8] В.С. Багаев, Л.И. Падучих, Т.С. Сахоненко. Экситоны в полупроводниках. (М., Наука, 1971) с. 54.
- [9] А.П. Леванюк, В.В. Осипов. УФН, 133 (3), 427 (1981).
- [10] Б.И. Шкловский, А.Л. Эфрос. Электронные свойства легированных полупроводников (М., Наука, 1979).
- [11] E. Grilli, M. Grilli, R. Zambani, L. Paussi. Phys. Rev. B, 45, 1638 (1992).

Редактор Л.В. Беляков

The concentration dependence of near-band-edge photoluminescence of undoped semi-insulating GaAs

V.F. Kovalenko, M.B. Litvinova, S.V. Shutov

Institute for Physics of Semoconductors, National Academy of Sciences, 73008 Kherson, Ukraine

Abstract The spectral position of the near-band-edge photoluminescence maximum, full width at half maximum, resistivity, charge carriers mobility dependencies on carbon content in undoped semiinsulating GaAs crystals at 77 K are studied. The observed dependencies are attributed to the nature of interaction of charge carriers with ionized impurity atoms and structure defects.