Оценки параметров нитридов элементов третьей группы: BN, AIN, GaN и InN

© С.Ю. Давыдов

Санкт-Петербургский государственный электротехнический университет, 197376 Санкт-Петербург, Россия

(Получена 14 мая 2001 г. Принята к печати 17 мая 2001 г.)

Простыми методами, использующими как квантово-механический, так и полуэмпирический подходы, сделаны оценки диэлектрических, оптических, электрооптических, магнитных, упругих, фотоупругих, пьезоэлектрических и фононных характеристик кристаллов XN (X = B, Al, Ga, In). Определены значения деформационных потенциалов и магнитных восприимчивостей. Результаты расчетов сопоставлены с имеющимися экспериментальными данными и расчетами других авторов.

Несмотря на то, что экспериментальному изучению нитридов металлов третьей группы (III-нитридов) уделяется в последнее время все большее внимание (см., например, материалы конференции [1] и ссылки, приведенные там), к настоящему моменту многие характеристики даже для наиболее распространенных политипов неизвестны. Поэтому теоретическое исследование Ш-нитридов представляется весьма актуальным. Для расчета различных характеристик III-нитридов используются, как правило, численные методы, основанные на первых принципах [1]. Однако несомненный интерес представляет и упрощенный подход к проблеме, основанный на методе связывающих орбиталей Харрисона [2,3], позволящий получать аналитические выражения для большого числа физических характеристик полупроводниковых кристаллов. Именно различные модификации метода связывающих орбиталей были использованы нами в работах [4-10] для описания свойств широкозонных полупроводников. В настоящей работе этот подход применяется к III-нитридам включая нитрид индия, до этого нами не исследовавшийся. В отличие от [4-10] здесь использованы значения атомных термов, взятые из таблиц Хермана-Скиллмана [2]. Исходные параметры расчета приведены в табл. 1. Обращает на себя внимание то обстоятельство, что в ряду BN -> InN ковалентность соединений (α_c) убывает, а полярность (α_p) растет.

В табл. 2 представлены результаты расчета высокочастотной (ε_{∞}) и статической (ε_{0}) диэлектрических проницаемостей, выполненные по формулам, приведенным в работе [4]. (Отметим, что для вычисления последней, в отличие от [2,3], был учтен и вклад в экранировку ионных остовов). В скобках приведены экспериментальные данные из справочника [11]. По данным, приведенным в [2], для BN $\varepsilon_{\infty} = 4.5$, а для AlN $\varepsilon_{\infty} = 4.8$. По данным [12,13] для BN и AlN значения ε_{∞} равны соответственно 4.53 и 4.46. Согласие между расчетными и экспериментальными данными вполне удовлетворительное. Интересно отметить, что практически к тем же результатам приводят расчеты из первых принципов [14]. Таким образом, в соответствии с теорией как высокочастотная, так и статическая проницаемости растут в ряду BN \rightarrow InN с ростом полярности связи α_p , то же наблюдается и в эксперименте.

В табл. 2 также представлены значения электронной квадратичной восприимчивости χ_{14}^e , линейного электрооптического коэффициента r_{41} и фотоупругих постоянных p_{ij} для кубических кристаллов по формулам, приведенным в работах [4,5]. Значения восприимчивости χ_{14}^e возрастают с ростом полярности α_p ; электрооптические коэффициенты r_{41} , оставаясь отрицательными, увеличи-

Таблица 1. Исходные параметры расчета: d — расстояние между ближайшими соседями в кристалле [2], V_2 и V_3 — ковалентная и ионная энергии [3], α_c и α_p — ковалентность и полярность [3], γ — подгоночный параметр для расчета диэлектрических свойств [2]

Величина	BN	AlN	GaN	InN
d,Å	1.57	1.89	1.94	2.15
$-V_2$, $\Im B$	9.95	6.87	6.52	5.31
<i>V</i> ₃ , эВ	3.12	4.09	3.92	4.16
α_{c}	0.95	0.86	0.86	0.80
α_{p}	0.30	0.51	0.52	0.59
γ^{P}	1.25	1.50	1.50	2.00

Примечание. Значения атомных термов взяты из таблиц Хермана-Скиллмана [2].

Таблица 2. Результаты расчета высокочастотной (ε_{∞}) и статической (ε_{0}) диэлектрических проницаемостей, электронной квадратичной восприимчивости (χ_{14}^{e}), линейного электрооптического коэффициента (r_{41}) и фотоупругих постоянных (p_{ij}) для кубических кристаллов

Величина	BN	AlN	GaN	InN
$\frac{\varepsilon_{\infty}}{\varepsilon_{0}}$ $\chi_{14}^{e} \cdot 10^{-7}, \text{CGSE}$ $\tau_{\infty} \cdot 10^{-7}, \text{CGSE}$	4.40	5.32	5.38 (5.8)	8.04 (9.3)
	4.87	8.41	10.74 (12.2)	14.86
	0.20	0.81	0.89	2.78
	-0.05	-0.21	-0.14	-0.29
$p_{11} \cdot 10^{2}$ $p_{12} \cdot 10^{2}$ $p_{44} \cdot 10^{2}$	-29.7	-8.6	-7.3	1.1
	-10.4	-3.0	-2.6	0.4
	-15.2	-4.4	-3.7	0.6

Примечание. В скобках приведены экспериментальные данные [11].

Таблица 3. Результаты расчета квадратичной восприимчивости (χ_{ij}) и фотоупругих постоянных (p_{ij}) для гексагональных кристаллов

Величина	BN	AlN	GaN	InN
$\chi_{33} \cdot 10^8$, CGSE $(\chi_{-1} - \chi_{-1}) \cdot 10^8$ CGSE	0.92	5.4 _2 7	3.7	17.4
$(\chi_{31} - \chi_{15}) + 10^{2}$, COSE $-p_{11} \cdot 10^{2}$	34.7	10.0	8.6	-1.4
$-p_{33} \cdot 10^2$	37.0	10.7	9.1	-1.4
$-p_{12} \cdot 10^2$	9.2 6.7	2.7	2.3	-0.3
$-p_{13} \cdot 10^{-10}$ $-p_{44} \cdot 10^{2}$	11.0	3.2	2.7	-0.2 -0.4
$-p_{66} \cdot 10^2$	12.8	3.7	3.2	-0.5

Таблица 4. Безразмерные силовые константы Китинга $(\alpha^* \ u \ \beta^*)$, упругие постоянные для кубических (C_{ij}^c) и гексагональных (C_{ij}^h) кристаллов и соответствующие модули объемного сжатия $(B^c \ u \ B^h)$ (в ГПа)

Величина	GaN	AlN	InN
$lpha^*$	4.36	4.61	4.20
eta^*	0.92	1.12	0.80
C_{11}^{c}	322	325	178
C_{12}^{c}	156	142	92
$C_{44}^{\tilde{c}}$	138	147	73
$B^{\dot{c}}$	211	203	121
C_{11}^h	373 (390)	369 (345)	204
C_{33}^{h}	398 (398)	395 (395)	217
$C_{AA}^{\tilde{h}}$	105 (105)	96 (118)	50
C_{66}^{h}	123 (123)	112	60
C_{12}^{h}	130 (145)	145 (125)	85
$C_{13}^{h^2}$	106 (106)	120 (120)	72
$B^{\tilde{h}^{S}}$	203	211	120

Примечание. В скобках приведены экспериментальные данные [14].

ваются по модулю в ряду BN \rightarrow InN. Следует отметить, что в отличие от оригинального подхода [2,3] нами учитывались при этом зонные эффекты в рамках расширенного метода связывающих орбиталей. Фотоупругие постоянные p_{ij} , выражения для которых получены нами из аналогии с упругими постоянными, изменяются от больших по модулю отрицательных значений для BN до малых положительных для InN. Нам, к сожалению, не известны соответствующие экспериментальные данные. То же относится и к приведенным в табл.3 значениям χ_{33} , χ_{13} и p_{ij} для гексагональных кристаллов. Из расчета следует, что восприимчивости χ_{33} (> 0) и χ_{13} (< 0) растут по величине в ряду BN \rightarrow InN; для p_{ij} имеем ту же тенденцию, что и в кубических кристаллах.

В табл. 4 представлены результаты расчета упругих постоянных для кубических (C_{ij}^c) и гексагональных (C_{ij}^h) кристаллов и соответствующих модулей объемного сжатия $(B^c \ и \ B^h)$, выполненного в рамках предложенной нами ранее модели Китинга–Харрисона [15,6]. При этом использовались экспериментальные данные по упругости

гексагональных кристаллов GaN [16] и поликристаллических пленок AlN [17]. Отметим, что расчет из первых принципов, проведенный в работе [18], дает для GaN и AlN соответственно $B^c = 195$ и 195 ГПа, $B^h = 195$ и 194 ГПа. Согласие между расчетом и экспериментом хорошее. Близкие к нашим значениям C_{ij}^h получены в теоретической работе [19].

В табл. 5 содержатся результаты расчета пьезоэлектрических параметров, выполненного по схеме работы [7] для кубических кристаллов. В соответствии с теорией заряд металлического иона z^* , относительное внутреннее смещение ξ , пьезоэлектрический заряд e_p^* и пьезоэлектрическая постоянная e₁₄ возрастают в ряду BN -> InN. К сожалению, нам известна лишь одна работа [20], где измерялась постоянная е₁₄ для кубического нитрида индия, оказавшаяся равной 0.375 Кл/м², что в 2.5 раза меньше полученного нами значения. Вообще говоря, такое расхождение неудивительно (см., например, [2], с. 282), так как расчет e_{14} — сложная задача. Стоит заметить, что в литературе практически отсутствуют теоретические работы по данному вопросу: нам известна лишь публикация [21], где рассчитываются пьезоэлектрические константы для гексагональных кристаллов AlN и ZnO.

В табл. 6 представлены результаты расчета фононных частот (в см⁻¹) для кубических кристаллов по формулам, приведенным в [8]. По данным работы [22] для InN экспериментальные значения частот поперечного и продольного оптических фононов составляют $\omega_{TO}(0) = 478 \text{ см}^{-1}$, $\omega_{LO}(0) = 694 \text{ см}^{-1}$, что отлично согласуется с нашими результатами. Расчет из первых принципов [18] дает $\omega_{TO}(0) = 648$ и 558 см⁻¹ для AlN и GaN соответственно, что в среднем в 1.5 раза больше полученных нами значений. Схожие результаты для тех же соединений приведены

Таблица 5. Результаты расчета заряда металлического иона (z^*) , относительно внутреннего смещения (ξ) , пьезоэлектрического заряда (e_p^*) и пьезоэлектрической постоянной (e_{14}) для кубических кристаллов

Величина	BN	AlN	GaN	InN
z*	0.20	1.04	1.06	1.76
ξ	0.62	0.72	0.72	0.77
e _p	-0.25	0.65	0.67	1.46
e ₁₄ , Кл/м ²	-0.19	0.54	0.53	0.95

Таблица 6. Результаты расчета фононных частот (в см⁻¹) для кубических кристаллов

Величина	AlN	GaN	InN
$\omega_{TO}(0) \ \omega_{LO}(0) \ \omega_{TA}(2\pi/a) \ \omega_{LA}(2\pi/a)$	454	545	474
	606	703	640
	205	246	213
	368	442	383

Таблица 7. Результаты расчета деформационного потенциала зоны проводимости (E_{dc}) и орбитальной диамагнитной (χ_L) , парамагнитной (χ_p) , остовной диамагнитной (χ_C) , полной магнитной (χ) проницаемостей для кубических кристаллов

Величина	BN	AlN	GaN	InN
$-E_{dc}^{}, \Im \mathrm{B} \ \chi_L \cdot 10^6 \ \chi_P \cdot 10^6 \ \chi_C \cdot 10^6 \ \chi \cdot $	$6.76 \\ -2.43 \\ 2.01 \\ -0.01 \\ -0.43$	$\begin{array}{r} 4.49 \\ -2.02 \\ 1.22 \\ -0.18 \\ -0.98 \end{array}$	$4.43 \\ -1.97 \\ 1.18 \\ -0.56 \\ -1.85$	3.54 -1.78 0.86 -1.49 -2.41

в работе [23]. Результаты вычислений *ab initio* [24] для GaN также близки к нашим. Далее, по данным [25], где исследовались гексагональные кристаллы GaN и AlN, получены следующие значения частот при температуре T = 300 K: $\omega_{TO}(0) = 532 - A_1(TO)$, 599 — $E_1(TO)$, $\omega_{LO}(0) = 734 - A_1(LO)$, 741 — $E_1(LO)$ для GaN; $\omega_{TO}(0) = 611 - A_1(TO), 670 - E_1(TO),$ $\omega_{LO}(0) = 881 - A_1(LO), 922 - E_1(LO)$ для AlN. (Здесь и далее все частоты даны в см $^{-1}$). Проводя сопоставление с нашими расчетами, выполненными для кубических кристаллов, можно сказать, что для нитрида галлия согласие вполне удовлетворительное, тогда как для нитрида алюминия наши результаты приблизительно в 1.5 раза меньше экспериментальных. Что касается низкочастотных мод, то в работе [25] получены значения частоты поперечного акустического фонона $\omega_{TA}(2\pi/a)$ $(E_2(low))$ 144 и 245 для GaN и AlN соответственно, что отлично согласуется с нашим результатом для нитрида галлия и в 0.7 раза меньше вычисленного нами значения для нитрида алюминия. Результаты расчета ab initio низкочастотных мод продольных акустических фононов $\omega_{LA}(2\pi/a)(B_1(\text{low}))$ в работе [26] отличаются от полученных нами в среднем в 1.5 раза. Таким образом, упрощенная схема расчета частот, предложенная в [8], дает полуколичественное согласие с экспериментом.

В табл. 7 содержатся результаты расчета деформационного потенциала зоны проводимости (E_{dc}) и орбитальной диамагнитной (χ_L) , парамагнитной (χ_P) , остовной диамагнитной (χ_C) , и полной (χ) магнитных проницаемостей для кубических кристаллов, проведенного по схеме, предложенной нами в [9,10] для кубических кристаллов. Тенденции, связанные с изменением полярности связи α_p , легко просматриваются. Нам, к сожалению, не известны какие-либо соответствующие экспериментальные данные.

В заключение приведем связь ковалентности α_c по Харрисону с ионностью f_i по Филлипсу (см., например, [8]):

$$f_i = 1 - \alpha_c^3$$

Тогда в ряду BN \rightarrow AlN \rightarrow GaN \rightarrow InN имеем $f_1=0.13,$ 0.36, 0.37, 0.49.

Суммируя, следует сказать, что упрощенная схема расчета физических характеристик полупроводниковых кристаллов, развитая нами на основе модификации метода связывающих орбиталей Харрисона совместно с использованием кристаллографических аналогий и некоторых полуэмпирических моделей (типа модели Китинга), способна довольно разумно описывать свойства III-нитридов. Эта схема позволяет простым образом оценить то или иное свойство не только чистого соединения, но и сплавов.

Список литературы

- Proc. 7th Int. Conf. Silicon Carbide, III-Nitrides and Related Materials (Stockholm, 1997), ed. by G. Pensl, H. Morkoc, B. Monemar and E. Janzen (Trans. Tech., Switzerland, 1998).
- [2] У.А. Харрисон. Электронная структура и свойства твердых тел (М., Мир, 1983) т. 1.
- [3] W.A. Harrison. Phys. Rev. B, 27, 3532 (1983).
- [4] С.Ю. Давыдов, С.К. Тихонов. ФТТ, 37, 3044 (1995).
- [5] С.Ю. Давыдов, С.К. Тихонов. ФТП, **31**, 823 (1997).
- [6] С.Ю. Давыдов, А.В. Соломонов. Письма ЖТФ, 25, 23 (1999).
- [7] С.Ю. Давыдов, С.К. Тихонов. ФТП, 30, 968 (1996).
- [8] С.Ю. Давыдов, С.К. Тихонов. ФТП, 30, 834 (1996).
- [9] С.Ю. Давыдов, С.К. Тихонов. ФТП, 30, 1137 (1996).
- [10] С.Ю. Давыдов, С.К. Тихонов. ФТП, 30, 695 (1996).
- [11] Физические величины. Справочник, под ред. И.С. Григорьева, Е.З. Мейлихова (М., Энергоатомиздат, 1991).
- [12] Landolt-Bornstein. New Series, Group III (Berlin, Springer, 1982) v. 17a.
- [13] J.A. Sanjurijo, E. Lopez-Cruz, P. Vogl, M. Cardona. Phys. Rev. B, 28, 9237 (1983).
- [14] K. Karch, J.-M. Wagner, H. Siegle, C. Thomsen, F. Bechstedt. *Proc. 7th Int. Conf. Silicon Carbide, III-Nitrides and Related Materials* (Stockholm, 1997), ed. by G. Pensl, H. Morkoc, B. Monemar and E. Janzen (Trans. Tech., Switzerland, 1998) p. 303.
- [15] С.Ю. Давыдов, С.К. Тихонов. ФТП, 30, 1300 (1996).
- [16] A. Polian, M. Grimsditch, I. Grzegory. J. Appl. Phys., 79, 3343 (1996).
- [17] А.В. Добрынин, И.П. Казаков, Г.А. Найда. Зарубежн. электрон. техн., **4**, 44 (1989).
- [18] K. Miwa, A. Fukumoto. Phys. Rev. B, 48, 7897 (1993).
- [19] A.F. Wright. J. Appl. Phys., 82, 2833 (1997).
- [20] V.W. Chen, T.L. Tansley, T. Osotchan. J. Appl. Phys., 75, 7365 (1994).
- [21] T. Kamiya. J. Appl. Phys., 35, 4421 (1996).
- [22] K. Osamura, S. Naka, Y. Murakami. J. Appl. Phys., 46, 3432 (1975).
- [23] I. Gorczyca, N.E. Christensen, E.L. Peltzer y Blanca, C.O. Rodriguez. Phys. Rev. B, 51, 11 936 (1995).
- [24] H. Sterner, A. Schevwiola, K. Karch, P. Pavone, D. Strauch, H. Siegle, G. Kaczmarczyk, L. Filippidis, C. Thomsen. *Proc. 7th Int. Conf. Silicon Carbide, III-Nitrides and Related Materials* (Stockholm, 1997), ed. by G. Pensl, H. Morkoc, B. Monemar and E. Janzen (Trans. Tech., Switzerland, 1998) p. 264.

Физика и техника полупроводников, 2002, том 36, вып. 1

- [25] V.Yu. Davydov, Yu.E. Kitaev, I.N. Goncharuk, A.N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M.B. Smirnov, A.P. Mirgorodsky, R.A. Evarestov. Phys. Rev. B, 58, 12899 (1998).
- [26] K. Karch, J.-M. Wagner, F. Bechstedt. Phys. Rev. B, 57, 7043 (1998).

Редактор Л.В. Шаронова

Evaluations of parameters peculiar to the third group nitrides: BN, AIN, GaP, and InN

S.Yu. Davydov

St. Petersburg State Electrotechnical University, 197376 St. Petersburg, Russia