Варизонный детектор ионизирующего излучения

© Ю. Пожела[¶], К. Пожела, А. Шиленас, В. Ясутис, Л. Дапкус, А. Киндурис, В. Юцене

Институт физики полупроводников, 2600 Вильнюс, Литва

(Получена 8 мая 2001 г. Принята к печати 31 мая 2001 г.)

Исследован токовый отклик варизонных слоев $Al_x Ga_{1-x} As$ на оптическое и рентгеновское излучение. Варизонное поле в слоях $Al_x Ga_{1-x} As$ толщиной 15 мкм с изменением x от 0 до 0.4 обеспечивает полное собирание зарядов, генерируемых ионизирующим излучением, и позволяет получить ампер-ваттную чувствительность $Al_x Ga_{1-x} As$ до 0.25 A/BT. В слоях с пониженным легированием узкозонной стороны варизонного слоя $Al_x Ga_{1-x} As$ вольт-ваттная чувствительность к рентгеновскому излучению с энергией ниже 15 кэВ достигает в фотовольтаическом режиме $1.6 \cdot 10^3$ B/BT.

1. Введение

Полупроводниковые слои с изменяющейся по толщине шириной запрещенной зоны (так называемые варизонные структуры) могут быть использованы в качестве детекторов ионизирующих излучений как детекторы со световым [1,2], так и с токовым [3,4] откликом. В первом случае чувствительность детектора определяется квантовым выходом конверсии ионизирующего излучения в световое излучение и эффективностью вывода последнего через широкозонное окно варизонного кристалла наружу к внешнему фотодетектору. Несмотря на большое преимущество детектора со световым откликом, позволяющим наблюдать с большим пространственным разрешением люминесцентную картину падающего на кристалл ионизирующего излучения, внешний квантовый выход таких детекторов оказывается небольшим [2].

Во втором случае варизонное поле используется для собирания заряда, генерируемого ионизирующим излучением в объеме варизонного слоя. Разность встроенных полей для дырок и электронов, а также их подвижностей, позволяет разделить заряды и наблюдать варизонную фотоэдс [3,4]. Достаточно большое варизонное поле может обеспечить высокоэффективный сбор генерированных зарядов в кристалле.

В настоящей работе исследован токовый отклик варизонных слоев $Al_x Ga_{1-x} As$ на оптическое и рентгеновское излучения. Определены условия получения полного собирания неравновесных носителей, создаваемых ионизирующим излучением с использованием только варизонного поля без приложения внешнего напряжения. Рассматриваются возможности резкого повышения вольт-ваттной чувствительности варизонных детекторов при неоднородном по толщине слоя $Al_x Ga_{1-x} As$ легировании.

Варизонная фотоэдс и токовый отклик в варизонном слое

При освещении варизонного полупроводника за счет градиента ширины запрещенной зоны возникает фотоэдс, экспериментально обнаруженная в работах [3,4]. Опре-

делим величину фототока и фотоэдс в варизонной структуре, показанной на рис. 1, a, при создании внешним ионизирующим излучением неравновесных электронов Δn и дырок Δp . Токи электронов j_n и дырок j_p в такой структуре равны

$$\dot{a}_n = \sigma_n \left(\frac{1}{e} \frac{dE_C}{dz} + F_v + F_0 \right), \tag{1}$$

$$j_p = \sigma_p \left(\frac{1}{e} \frac{dE_V}{dz} + F_v + F_0 \right), \tag{2}$$

$$\sigma_n = e\mu_n(n_0 + \Delta n), \quad \sigma_p = e\mu_p(p_0 + \Delta p), \quad (3)$$

где е — заряд электрона; n_0 , μ_n и p_0 , μ_p — равновесные концентрации и подвижности электронов и дырок; F_v — электрическое поле, обусловленное варизонной фотоэдс; F_0 — поле от внешних источников напряжения; E_C и E_V — энергии дна зоны проводимости и потолка валентной зоны. Поля варизонной структуры для дырок и электронов $\frac{1}{e} \frac{dE_V}{dz}$ и $\frac{1}{e} \frac{dE_C}{dz}$ связаны с градиентом ширины запрещенной зоны E_g соотношением

$$\frac{dE_g}{dz} = \frac{dE_C}{dz} - \frac{dE_V}{dz}.$$
(4)

Согласно (1), (2) и (4), ток через варизонную структуру равен

$$j = j_n + j_p = \sigma_n \frac{1}{e} \frac{dE_g}{dz} + (\sigma_n + \sigma_p) \frac{1}{e} \frac{dE_V}{dz} + (\sigma_n + \sigma_p)(F_v + F_0).$$
(5)

Токовый отклик на генерацию неравновесных электронов и дырок $\Delta n = \Delta p$ равен

$$j_{\Delta n} = \sigma_{\Delta n} \frac{1}{e} \frac{dE_g}{dz} + (\sigma_{\Delta n} + \sigma_{\Delta p}) \left(\frac{1}{e} \frac{dE_V}{dz} + F_0\right) + (\sigma_n + \sigma_p)F_v, \tag{6}$$

где

$$\sigma_{\Delta n} = e\mu_n \Delta n, \quad \sigma_{\Delta p} = e\mu_p \Delta p. \tag{7}$$

В уравнении (6) предполагается, что $\frac{dE_V}{dz}$ не изменяется при однородной по слою генерации неравновесных носителей.

[¶] E-mail: pozela@uj.pfi.lt

Рис. 1. Схематические изображения изменения энергии краев зоны проводимости E_C и валентной зоны E_V по толщине z варизонных слоев p-Al_xGa_{1-x}As: a — однородно легированный слой толщиной L, b — неоднородно легированный слой толщиной l. E_F — уровень Ферми, E_g — ширина запрещенной зоны.

Из условия $F_0+F_v=0$ получаем ток короткого замыкания

$$j_{\rm sc} = \sigma_{\Delta n} \frac{1}{e} \frac{dE_g}{dz} + (\sigma_{\Delta n} + \sigma_{\Delta p}) \frac{1}{e} \frac{dE_V}{dz}.$$
 (8)

При $F_0=0$ из условия $j_{\Delta n}=0$ получим варизонное поле

$$F_v = j_{\rm sc}(\sigma_n + \sigma_p)^{-1}.$$
 (9)

Варизонная фотоэдс равна

$$U_v = \int_0^L F_v \, dz. \tag{10}$$

Для легированного дырочного полупроводника $\frac{dE_V}{dz} \approx 0$ и ток короткого замыкания равен

$$j_{\rm sc}(p_0) \approx \frac{dE_g}{dz} \mu_n \Delta n.$$
 (11)

Для варизонной фотоэдс в дырочном полупроводнике в слое толщиной L при однородном по координате zлегировании и фотогенерации $\Delta n = \Delta p$ получаем

$$U_v = \int_0^L F_v \, dz = \frac{b\Delta n}{(b+1)\Delta n + p_0} \frac{1}{e} \, \Delta E_g, \qquad (12)$$

где $b = \mu_n/\mu_p$ и

$$\Delta E_g = E_g(L) - E(0). \tag{13}$$

Токовая чувствительность варизонного кристалла такая же, как у обычного гомозонного фотосопротивления, к которому приложено напряжение, создающее поле F_0 , равное $\frac{1}{e} \frac{dE_g}{dz}$. Однако отсутствие необходимости приложения внешнего напряжения обеспечивает резкое снижение уровня токовых шумов в варизонном фотопроводнике в сравнении с гомозонным фотопроводником. Высокая проводимость по валентной зоне варизонного кристалла обеспечивает низкий уровень тепловых шумов, что дает много преимуществ варизонному детектору также и перед фотодетектором на p-i-n-переходе.

Токовая чувствительность дырочной варизонной структуры $Al_xGa_{1-x}As$ определяется дрейфовой скоростью электронов в варизонном поле зоны проводимости. В отсутствие дрейфа электронов стационарное число пар носителей заряда, участвующих в рекомбинации, равно

$$\Delta n = \frac{d\Delta N}{dt}\,\tau,\tag{14}$$

где $d\Delta N/dt$ — число пар, генерируемых в единицу времени в единице объема за счет ионизирующего излучения, τ — время рекомбинации. В легированном $Al_x Ga_{1-x} As$ время рекомбинации составляет $\tau \approx 10^{-9}$ с.

При наличии дрейфа часть электронов уносится из слоя толщиной *L*, не успевая рекомбинировать, и участвует в фототоке

$$j = e\Delta nv_{\rm dr} = e \, \frac{d\Delta N}{dt} L \frac{\tau}{t_{\rm dr}},\tag{15}$$

где $t_{\rm dr}$ — время пролета электроном слоя толщиной L с дрейфовой скоростью $v_{\rm dr}$. Коэффициент фотоэлектрического усиления

$$K = \tau / t_{\rm dr} \tag{16}$$

показывает, какая доля пар, генерированных в слое L, участвует в фототоке. При K = 1 имеет место полное собирание генерированных в кристалле носителей заряда.

В однородно легированном варизонном кристалле время пролета слоя *L* равно

$$t_{\rm dr} = \frac{L^2}{\mu \left\{ \frac{1}{e} \left[E_g(L) - E_g(0) \right] + U_v + U_0 \right\}}.$$
 (17)

В случае $Al_x Ga_{1-x} As$ с изменением x в интервале 0-0.4время пролета $t_{dr} \approx L^2/2.2 \cdot 10^3$ с. При L = 15 мкм t_{dr} сравнивается со временем жизни $\tau_r = 10^{-9}$ с и $K \approx 1$. Время пролета t_{dr} можно уменьшить или увеличить путем приложения внешнего напряжения U_0 к слою.

Число генерируемых в единицу времени электронно-дырочных пар при поглощении ионизирующего излучения мощностью $W_X(L)$ в слое L равно

$$\frac{d\Delta NL}{dt} = W_X(L)/E_T,$$
(18)

где E_T — средняя энергия, необходимая для генерации одной пары. Подставляя (18) в (15), для ампер-ваттной чувствительности получаем

$$\beta_j = \frac{j}{W_X(L)} = \frac{eK}{E_T}.$$
(19)

Для $Al_xGa_{1-x}As E_T \approx 4 \Im B$ и $\beta_j = 0.25 \text{ A/BT}$ при полном собирании генерированных в слое носителей

заряда (K=1). Для вольт-ваттной чувствительности при $\Delta n = \Delta p \ll p_0$ получаем

$$\beta_v = \frac{U_v}{W_X(L)} = \beta_j \frac{L}{\sigma_p}.$$
 (20)

При $p_0 = 10^{16} \text{ см}^{-3}$, $\mu_p = 400 \text{ см}^2/(\text{B} \cdot \text{c})$ и $L = 10^{-3} \text{ см}^{-1}$ получаем $\beta_v = 0.4 \cdot 10^{-3}$ В/Вт. Подобная вольт-ваттная чувствительность варизонного слоя наблюдалась в экспериментах [3,4].

Низкая вольт-ваттная чувствительность обусловлена высокой проводимостью активного слоя варизонной структуры. Высокая проводимость означает малое время диэлектрической релаксации разделенных варизонным полем неравновесных зарядов. Повысить вольт-ваттную чувствительность можно путем уменьшения проводимости хотя бы части варизонного слоя.

Рассмотрим дырочный варизонный слой с неоднородным легированием по толщине слоя. Пусть легирование таково, что E_V ленейно изменяется по толщине слоя (рис. 1, *b*). Варизонное поле в таком слое, согласно (8) и (9), равно

$$F_{v}(z) = \left[\sigma_{\Delta n} \frac{1}{e} \frac{dE_{g}}{dz} + (\sigma_{\Delta n} + \sigma_{\Delta p}) \frac{1}{e} \frac{dE_{V}}{dz}\right] \times \left[\sigma_{n}(z) + \sigma_{p}(z)\right]^{-1}.$$
 (21)

При $\sigma_{p0} \gg \sigma_{\Delta n} > \sigma_{\Delta p} > \sigma_{n0}$ получаем

$$F_{v}(z) \approx \frac{\Delta n}{p_{0}(z)} \left\{ \frac{b}{e} \frac{dE_{g}}{dz} + \frac{(b+1)}{e} \frac{dE_{V}}{dz} \right\}.$$
 (22)

Соответственно варизонная фотоэдс равна

$$U_{v} = \frac{\Delta n}{p_{0}(0)} \frac{kT}{e\Delta E_{V}} \left[b\Delta E_{g} + (b+1)\Delta E_{V} \right] \\ \times \left[1 - \exp\left(-\frac{\Delta E_{V}}{kT}\right) \right], \qquad (23)$$

где для слоя толщиной *l* принято

$$\frac{dE_V}{dz} = \frac{\Delta E_V}{l}, \qquad \frac{dE_g}{dz} = \frac{\Delta E_g}{l}$$
$$p_0(z) = p_0(0) \exp\left(\frac{\Delta E_V}{l} \frac{z}{kT}\right).$$

И

Отметим, что вследствие
$$E_g \neq 0$$
 фотоэдс на варизонном $p-p^+$ -переходе превышает таковую на гомозонном $p-p^+$ -переходе.

Неоднородное легирование приводит к двум существенным эффектам. Во-первых, растет ток короткого замыкания за счет появления дополнительно к варизонному полю $\frac{1}{e} \frac{dE_s}{dz}$ поля $\frac{1}{e} \frac{dE_v}{dz}$ того же знака. Во-вторых, резко возрастает варизонная фотоэдс за счет снижения концентрации основных носителей в обедненной области $p_0(0)$. При $\Delta E_V = 0.3$ эВ варизонная фотоэдс в этом чувствительном слое возрастает более чем на 6 порядков в сравнении с высоколегированной областью варизонного кристалла.

Чувствительный слой выгодно создавать с узкозонной стороны варизонного кристалла. Тогда этот слой оказывается также коллектором неравновесных носителей остальной части варизонной структуры толщиной $L \approx \tau v_{dr}$.

Увеличиние сопротивления слоя с высокой чувствительностью ограничивается требованием малой инерционности установления напряжения на этом слое. Если потребовать, чтобы время релаксации напряжения не превышало времени рекомбинации носителей τ в структуре, то величина максимального удельного сопротивления обедненного слоя $\rho_{\rm m}$ ограничивается неравенством

$$\rho_{\rm m} \le \frac{\tau}{\varepsilon},$$
(24)

где диэлектрическая проницаемость $Al_x Ga_{1-x} As$ равна $\varepsilon = 9 \cdot 10^{-13} \text{ с/(OM} \cdot \text{см})$. В $Al_x Ga_{1-x} As$ при $\tau = 10^{-9} \text{ с}$ сопротивление составляет $\rho_m \leq 1.1 \cdot 10^3 \text{ OM} \cdot \text{см}$, что в дырочном слое соответствует $p_0 \geq 1.4 \cdot 10^{13} \text{ см}^{-3}$.

3. Эксперимент

На подложке GaAs методом жидкофазной эпитаксии выращивались слои $Al_x Ga_{1-x} As$ толщиной 15-50 мкм, легированные Zn. Концентрация дырок в слоях была около 10^{18} см⁻³. Доля алюминия по толщине слоя изменялась линейно от x = 0.4 у подложки до x = 0 на поверхности кристалла. На верхней (x = 0) поверхности слоя формировался слой с обедненным легированием. Выращенные слои отделялись от подложки и по обе их стороны наносились токовые контакты малой площади (10^{-2} см²). Площадь образцов была около 10^{-1} см².

Экспериментальные измерения спектральной зависимости фотоэдс в полученных образцах подтвердили наличие высокочувствительного слоя на узкозонной поверхности слоя $Al_xGa_{1-x}As$. При освещении с узкозонной стороны (x = 0) наблюдаются высокие значения фотоэдс, возрастающие вместе с ростом глубины проникновения света, генерирующего носители (см. рис. 2).

При освещении с широкозонной стороны наблюдается влияние времени пролета и коэффициента K на величину фотоэдс. При $\lambda = 0.6$ мкм носители генерируются вблизи широкозонной поверхности кристалла и их время пролета через весь слой толщиной 15 мкм составляет $t_{\rm dr} \approx 10^{-9}$ с. С увеличением длины волны место генерации в соответствии с линейным изменением ширины запрещенной зоны смещается в узкозонную часть кристалла и время пролета уменьшается. При $\lambda = 0.8$ мкм длина пролета уменьшается в несколько раз и возникает усиление фототока (K > 1). Соответственно наблюдается увеличение в 4 раза варизонной фотоэдс. При дальнейшем уменьшении энергии кванта возбуждения в область $E < E_g$ генерация электронно-дырочных пар прекращается и варизонная фотоэдс исчезает (см. рис. 2).

Рис. 2. Зависимости варизонной фотоэдс U_v от длины волны фотонов при освещении варизонного кристалла $Al_x Ga_{1-x} As$ со стороны широкозонного окна (x = 0.4, кривая I) и с узкозонной стороны (x = 0, кривая 2).

Рис. 3. Зависимости варизонной фотоэдс, U_v (кривые 1, 2, 5) и интенсивности рентгенолюминесценции $V_{\rm CCD}$ (кривые 3, 4) от интенсивности рентгеновского излучения, выраженной через анодный ток излучателя I_a . Анод излучателя: 1, 2 — Cr; 3-5 — Cu. Анодное напряжение $U_a = 30$ кВ. $V_{\rm CCD}$ — показания детектора люминесценции на приборах с зарядовой связью (ССD-камеры) при времени экспозиции 0.3 с. Толщина образцов L, мкм: 1, 4, 5 — 15; 2, 3 — 50.

На рис. З показаны результаты измерений в кристаллах $Al_x Ga_{1-x} As$ зависимости варизонной фотоэдс от интенсивности потока рентгеновского излучения от источников с анодами из Си и Сг. Интенсивность потока полагается пропорциональной величине анодного тока источника рентгеновского излучения.

Измеренная интегральная мощность излучения от источника с анодом из Си в месте расположения детектора составляет $W_v = 43 \cdot 10^{-6} \,\mathrm{Br/cm^2}$ при $I_a = 20 \,\mathrm{mA}$, $U_a = 30 \,\mathrm{kB}$. Около 50% падающей на кристалл мощности поглощается в слое $\mathrm{Al}_x \mathrm{Ga}_{1-x} \mathrm{As}$ толщиной $L = 15 \,\mathrm{mkm}$. Отсюда получаем значение вольт-ваттной чувствительности варизонного детектора $\beta_v \approx 1.6 \cdot 10^3 \,\mathrm{B/BT}$.

Следовательно, чувствительность неоднородно легированного варизонного слоя Al_xGa_{1-x}As оказалась на 5-6 порядков выше чувствительности однородно легированных слоев, наблюдаемой в работах [3,4].

Столь высокая чувствительность подтверждает определяющую роль обедненного слоя в формировании варизонной фотоэдс. Столь значительная эдс наблюдается только в структурах с поверхностным слоем обедненного легирования. В структурах без обедненного слоя и с низкоомными токовыми контактами фотоэдс была менее 10⁻³ В.

Измерения зависимости варизонной фотоэдс от толщины структуры подтвердили роль времени пролета в формировании фотоэдс. Экспериментально наблюдаемая фотоэдс в структуре $Al_x Ga_{1-x}As$ толщиной L = 15 мкм (кривая 1 на рис. 3) в 6 раз больше, чем структуры толщиной L = 50 мкм (кривая 2), что при равных $\Delta E_g \approx 0.4$ эВ соответствует изменению коэффициента усиления K.

На рис. 3 приведены также измерения интенсивности люминесценции этих же кристаллов, наблюдаемой с помощью видеокамеры на приборах с зарядовой связью, в зависимости от интенсивности потока рентгеновского излучения. Наблюдается обратная картина: интенсивная рекомбинация с излучением в образце с L = 50 мкм (кривая 3) в 11 раз превышает таковую в образце с L = 15 мкм (кривая 4).

Таким образом, эксперименты подтверждают, что снижение токового выноса носителей заряда в варизонном слое увеличивает интенсивность люминесценции кристалла и, наоборот, увеличение токового выноса гасит последнюю.

Отсюла следует, что варизонные структуры $Al_{r}Ga_{1-r}As$ с токовым откликом можно эффективно использовать для детектирования ионизирующего излучения с коэффициентом поглощения $\alpha > L_K^{-1}$, где $L_K \approx 1.5 \cdot 10^{-3}$ см — толщина слоя, при которой K = 1. Такой коэффициент поглощения в Al_xGa_{1-x}As соответствует рентгеновским фотонам с энергией ниже 15 кэВ. Для детектирования глубокопроникающих в Al_xGa_{1-x}As излучений нужно использовать толстые варизонные слои. В таких слоях K < 1, и выгодно использовать варизонный детектор излучения с люминесцентным откликом.

4. Заключение

1. Варизонное поле слоя $Al_x Ga_{1-x} As$ с градиентом x = 0-0.4 толщиной 15 мкм обеспечивает полное собирание заряда, генерируемого ионизирующим излучением в слое. Относительно малая средняя энергия для создания электронно-дырочной пары в $Al_x Ga_{1-x} As$ (4 эВ) позволяет получить высокий выход генерации неравновесных зарядов при поглощении ионизирующего излучения. Оба фактора позволяют получить ампер-ваттную чувствительность $Al_x Ga_{1-x} As$ -детектора $\beta_j = 0.25 \text{ A/BT}$.

2. Вольт-ваттная чувствительность детектора прямо пропорциональна омическому сопротивлению слоя $Al_x Ga_{1-x} As.$ Слой с повышенным сопротивлением с узкозонной стороны варизонного слоя повышает чувствительность $Al_x Ga_{1-x} As$ -детектора на несколько порядков. Экспериментальная вольт–ваттная чувствительность варизонного слоя $Al_x Ga_{1-x} As$ толщиной 15 мкм с обедненным легированием приповерхностного слоя при рентгеновском облучении от источника с Cu-анодом при $U_a = 30$ кВ превышает $\beta_v \approx 1.6 \cdot 10^3$ B/Bт.

3. Варизонные слои $Al_x Ga_{1-x} As$ с токовым откликом перспективно использовать для детектирования излучений с глубиной проникновения до 15 мкм. Отсутствие внешних источников напряжения и тока, а также небольшое внутреннее сопротивление слоя обеспечивают понижение уровня шумов варизонных детекторов в сравнении с обычными фотодетекторами.

Список литературы

- J. Požela, K. Požela, A. Šilėnas, V. Jucienė, L. Dapkus, V. Jasutis, G. Tamulaitis, A. Žukauskas, R.-A. Bendorius. Nucl. Instrum. Meth. A, 434, 169 (1999).
- [2] J. Požela, K. Požela, A. Šilėnas, V. Jasutis, L. Dapkus, V. Jucienė. Lithuan. J. Phys., 39, 139 (1999).
- [3] А.Н. Именков, Н. Назаров, Б.С. Сулейменов, Б.В. Царенков, Ю.П. Яковлев. ФТП, 12, 2377 (1978).
- [4] Ж.И. Алфёров, В.М. Андреев, Ю.М. Задиранов, В.И. Корольков, Н. Рахимов, Т.С. Табаров. Письма ЖТФ, 4, 369 (1978).

Редактор Т.А. Полянская

A graded-gap detector for ionizing radiation

J. Požela, K. Požela, A. Šilėnas, V. Jasutis, L. Dapkus, A. Kindurys, V. Jucienė

Semiconductor Physics Institute, 2600 Vilnius, Lithuania

Abstract The current response to optical and X-ray radiation in graded-gap $Al_x Ga_{1-x} As$ layers is investigated. Graded-gap electric field in $Al_x Ga_{1-x} As$ layers of $L = 15 \,\mu$ m thickness, with x changing from 0 to 0.4 along the layer, makes it possible to get full accumulation of charge carriers generated by ionizing radiation and enables us to achieve 0.25 A/W for the current/power sensitivity. It is shown that a low-doped layer on the narrow-gap side of the $Al_x Ga_{1-x} As$ graded-gap crystal raises the photovoltaic response to X-ray radiation with the energy lower than 15 keV up to $1.6 \cdot 10^3 \,\text{V/W}$.