Электрические характеристики интерференционных транзисторов с одним затвором на различных полупроводниковых материалах

© И.И. Абрамов, А.И. Рогачев

Белорусский государственный университет информатики и радиоэлектроники, 220027 Минск, Белоруссия

(Получена 19 декабря 2000 г. Принята к печати 14 апреля 2001 г.)

Проведено теоретическое исследование вольт-амперных и частотных характеристик однозатворных интерференционных *T*-транзисторов на квантовых проволоках различных полупроводниковых материалов, а именно Si, Ge, GaAs, InAs, GaSb, InSb, GaP, InP. Осуществлен учет двух механизмов рассеяния в модели *T*-транзистора с целью оценки их влияния на электрические характеристики приборов. Адекватность предложенной модели проверена путем сравнения результатов моделирования с экспериментальными данными. Приведенные в работе расчеты выполнены с помощью подсистемы моделирования приборов на квантовых проволоках QW-NANODEV.

Введение

Качественно новые возможности открываются для создания сверхинтегрированных систем твердотельной электроники в связи с разработкой приборных структур на квантовых проволоках [1-3]. С одной стороны, это связано с хорошей совместимостью методов создания таких структур как с отработанной планарной технологией традиционных интегральных схем, так и методами современной нанотехнологии. С другой стороны, ожидается, что приборы на квантовых проволоках будут обладать приемлемыми, а в ряде случаев уникальными, электрическими характеристиками. В частности, недавно было показано, что для интерференционных Т-транзисторов возможно наличие области насыщения на выходных вольт-амперных характеристиках (ВАХ) при малых смещениях на стоке [4]. В результате допустимо их применение как в аналоговых, так и в цифровых наноэлектронных интегральных схемах. При этом данные приборы могут обладать очень высокими рабочими частотами [4]. По изложенным причинам в ближайшее время, как и для резонансно-туннельных структур [5], одноэлектронных структур [6,7], следует ожидать создание наноэлектронных интегральных схем, включающих приборы на квантовых проволоках. Экспериментальные образцы таких приборов уже созданы [8].

Цель данной работы — теоретическое исследование с использованием предложенной модели электрических характеристик интерференционных *T*-транзисторов с одним затвором на квантовых проволоках различных полупроводниковых материалов и выявление наиболее предпочтительных из них.

Модель

В данной статье анализируется однозатворная структура интерференционного *T*-транзистора [2], приведенная на рис. 1. В качестве основы разработанной модели использовался метод матрицы рассеяния [1,2]. Рассмотрим ключевые модификации в модели по сравнению с [2]. Во-первых, в модели учтена зависимость эффективной массы электрона от геометрических размеров квантовой проволоки и концентрации примеси в ней согласно [9]. Вследствие трансцендентности модели [9] использовался самосогласованный расчет эффективной массы в отличие от [4]. Заметим, что сходимость итерационного процесса достигалась за 5–7 итераций.

Во-вторых, с помощью модели допустим учет механизмов рассеяния, характерных для исследуемых структур. В данной работе использовались модели рассеяния на удаленной заряженной примеси (влияние подложки) и на неоднородностях поверхности квантовой проволоки.

Так, интенсивность рассеяния на удаленной заряженной примеси вычисляется по формуле [10]

$$\tau_{\rm r}^{-1} = \frac{n_{\rm l} m^* q^4}{4\pi^2 \hbar^3 (\varepsilon \varepsilon_0)^2 k_x} K^2 \left[2d_0 k_x \sin\left(\frac{\theta}{2}\right) \right], \qquad (1)$$

где n_1 — линейная концентрация примеси в подложке; m^* — эффективная масса электрона в квантовой проволоке; q — заряд электрона; \hbar — приведенная постоянная Планка; $\varepsilon \cdot \varepsilon_0$ — абсолютная диэлектрическая проницаемость полупроводникового материала; k_x волновой вектор; d_0 — расстояние между примесным центром и началом координат, расположенным в центре квадратного сечения проволоки; θ — угол рассеяния;

Рис. 1. Однозатворный интерференционный *T*-транзистор на квантовой проволоке (*S* — исток, *D* — сток, *G* — затвор).

Параметр	GaSb	GaP	InP	Ge	Si	GaAs	InAs	InSb
Диэлектрическая постоянная, ε	15.7	11.1	12.5	16.2	11.7	12.9	15.15	16.8
Ширина запрещенной зоны, E_{e} , эВ	0.726	2.26	1.344	0.661	1.12	1.424	0.354	0.17
Продольная эффективная масса электрона, m_1/m_0	0.041	1.12	0.08	1.6	0.98	0.063	0.023	0.014
Поперечная эффективная масса электрона, m_t/m_0	0.041	0.22	0.08	0.08	0.19	0.063	0.023	0.014
Спин-орбитальное расщепление, Δ эВ	0.8	0.08	0.11	0.29	0.044	0.34	0.41	0.8

Параметры исследуемых материалов

К — модифицированная функция Бесселя второго рода. Интенсивность рассеяния на неоднородностях поверхности квантовой проволоки вычисляется согласно [11]:

$$\tau_{\rm sr}^{-1} = \frac{2\pi^{\frac{9}{2}}\Lambda\Delta^{2}\hbar}{m^{*}Lk_{x}\exp[k_{x}^{2}\Lambda^{2}\sin^{2}(\theta/2)]}.$$
 (2)

Здесь Δ и Λ — корреляционная длина и средняя амплитуда неоднородностей соответственно; L — длина квантовой проволоки. Суммарная интенсивность рассеяния определяется из соотношения

$$\tau_{\Sigma}^{-1} = \tau_{\rm r}^{-1} + \tau_{\rm sr}^{-1}.$$
 (3)

При учете процессов рассеяния дополнительно использовались следующие допущения. Так как квантовая проволока является существенно одномерной структурой, угол рассеяния θ предполагается равным π , что соответствует "полному" рассеянию, а d_0 бралось равным толщине проволоки.

В-третьих, с целью учета влияния механизмов рассеяния на ток стока использовалась не формула Tcy–Есаки, а следующее модифицированное выражение:

$$I_{\rm SD} = \frac{2q}{h} \int_{0}^{E_{\rm F}} \left| t(E, V_{\rm G}) \right|^2 D(E) \left[f(E) - f(E + qV_{\rm SD}) \right] dE,$$
(4)

где $I_{\rm SD}$ — ток стока, $|t(E, V_{\rm G})|^2$ — коэффициент прохождения электронной волны, определяемый с помощью матрицы рассеяния [2], $V_{\rm G}$ — напряжение на затворе, $V_{\rm SD}$ — напряжение на стоке, f(E) — функция распределения Ферми–Дирака, h — постоянная Планка, $E_{\rm F}$ — энергия Ферми, D(E) — коэффициент, характеризующий затухание электронной волны вследствие рассеяния, вычисляется с помощью соотношения

$$D(E) = \exp(-\alpha \cdot t_T \cdot \tau_{\Sigma}^{-1}), \qquad (5)$$

где t_T — время пролета носителей заряда через структуру в режиме баллистического транспорта, τ_{Σ}^{-1} — суммарная интенсивность механизмов рассеяния, α — постоянный коэффициент, определяемый взаимным влиянием механизмов рассеяния, и, строго говоря, должен идентифицироваться по экспериментальным данным. Время пролета рассчитывается исходя из скорости Ферми и определяется в виде

$$t_T = L \cdot \frac{m^*}{\hbar k_{\rm F}},\tag{6}$$

где k_F — волновой вектор Ферми.

Для однозатворных *Т*-транзисторов максимальная рабочая частота вычисляется по формуле [2]

$$f_{\rm max} = \frac{I_{\rm SD}^{\rm max}}{4\pi q}.$$
 (7)

Здесь *I*_{SD}^{max} — максимальный ток стока, рассчитываемый согласно (4).

Описанная модель была реализована в подсистеме моделирования приборных структур на основе квантовых проволок QW-NANODEV, входящей в систему моделирования наноэлектронных приборов NANODEV на эффектах резонансного, одноэлектронного туннелирования и квантовой интерференции [6].

Результаты и их обсуждение

Было проведено теоретическое исследование однозатворных интерференционных *T*-транзисторов на восьми полупроводниковых материалах. Их основные параметры, использовавшиеся при моделировании, сведены в таблицу [12].

Анализировались структуры с малыми размерами. Длина приборов L выбиралась равной 100 нм для достаточно сильного проявления квантовых эффектов и снижения влияния механизмов рассеяния. Толщина квантовой проволоки d₀ принималась равной 10 нм для работы транзистора в одномодовом режиме и в полном соответствии с современными возможностями нанотехнологии. Для снижения влияния процессов фононного рассеяния моделирование проводилось для низкой температуры 4.2 К. Зависимость эффективной массы от температуры не учитывалась. Корреляционная длина бралась $\Delta = 0.3$ нм, а средняя амплитуда неоднородностей $\Lambda = 0.15$ нм, что соответствует экспериментальным данным для наноразмерных пленок [13]. Концентрация примеси в квантовой проволоке полагалась $N_c = 10^{25} \,\mathrm{m}^{-3}$. При этом выбиралась слабо легированная подложка с концентрацией примеси $N_0 = 10^{23} \,\mathrm{m}^{-3}$. Коэффициент α в формуле (5) в данных теоретических исследованиях принимался равным 1.

На рис. 2 приведены расчетные ВАХ интерференционных *T*-транзисторов на различных материалах без учета (рис. 2, *a*) и с учетом рассеяния (рис. 2, *b*) при напряжении на затворе $V_{\rm G} = 0.2$ В. Из результатов видно, что для всех материалов получаются области насыщения на стоковых характеристиках транзисторов как в случае

Физика и техника полупроводников, 2001, том 35, вып. 11

Рис. 2. ВАХ однозатворного интерференционного *T*-транзистора без учета механизмов рассеяния (*a*) и с учетом рассеяния (*b*). 1 - InSb, 2 - GaSb, InAs, 3 - GaSb, 4 - InP, 5 - Si, 6 - GaP, 7 - Ge.

учета, так и неучета механизмов рассеяния, что хорошо согласуется с результатами работы [4]. Насыщение начинается, когда напряжение на стоке определяется значением энергии Ферми. Из графиков следует, что для всех материалов значения токов стока различаются. Это связано с комплексным влиянием параметров материалов, однако наиболее сильное влияние оказывает именно эффективная масса электрона в квантовой проволоке. С одной стороны, для материалов с малой эффективной массой ($m^* < 0.1 \cdot m_0$, где m_0 — масса свободного электрона), таких как GaAs, InAs, GaAs, InSb, InP, возможно получение бо́льших токов, чем в случае использования материалов с "тяжелыми" электронами в квантовой проволоке (Ge, Si, GaP). С другой стороны, для первой группы материалов процессы рассеяния оказывают большее влияние на характеристики приборов, в частности для них наблюдается более значительное снижение величин тока стока (рис. 2, b).

С помощью предложенной модели был проведен расчет максимальной рабочей частоты в зависимости от линейной концентрации примеси в квантовой проволоке для указанных восьми материалов. В отличие от

Физика и техника полупроводников, 2001, том 35, вып. 11

работы [4] напряжение на затворе принималось равным 0.01 В для минимизации его влияния на частотные характеристики. Кроме того, в данных исследованиях взята большая толщина квантовой проволоки. Для определения степени влияния рассеяния проводилось моделирование без его учета при D(E) = 1 (рис. 3, a) и с учетом рассеяния (рис. 3, b). Из приведенных графиков видно, что процессы рассеяния наиболее сильно снижают частотные характеристики приборов в области низких концентраций примеси в квантовой проволоке для всех исследуемых материалов. Это связано с тем, что при низких концентрациях примеси доля электронов, претерпевающих рассеяние, становится соизмеримой с общим количеством носителей заряда, участвующих в переносе тока. Это приводит к снижению тока стока практически до нуля, что в свою очередь отражается на частотных характеристиках. Однако отмеченная выше тенденция, согласно которой транзисторы на материалах с меньшей эффективной массой электрона в квантовой проволоке имеют лучшие характеристики, сохраняется и на приведенных частотных зависимостях.

С целью проверки адекватности используемой модели было проведено сравнение результатов моделирования

Рис. 3. Частотные характеристики однозатворного интерференционного *T*-транзистора без учета механизмов рассеяния (*a*) и с учетом рассеяния (*b*). 1 - InSb, 2 - InAs, 3 - GaAs, 4 - GaSb, 5 - InP, 6 - Si, 7 - GaP, 8 - Ge.

Рис. 4. Экспериментальная зависимость [8] изменения проводимости T-транзистора от напряжения на затворе (a), результаты моделирования проводимости структуры (b).

не только с результатами расчета [4], но и с экспериментальными данными. К сожалению, в настоящее время экспериментальные результаты для Т-транзисторов с приведенными выше малыми размерами отсутствуют, поэтому для такого исследования была выбрана транзисторная структура работы [8]. Длина и толщина квантовой проволоки в структуре — 8 мкм и 280 нм соответственно. Прибор функционирует в многомодовом режиме (9 мод), материал квантовой проволоки — GaAs. Был проведен расчет проводимости канала исток-сток в зависимости от приложенного к затвору напряжения по известной формуле Ландауэра [2]. В результате было получено хорошее качественное согласование с подобными экспериментальными характеристиками. Данные работы [8] и результаты моделирования приведены на рис. 4, a и b соответственно. Более детальное сравнение, к сожалению, невозможно ввиду отсутствия полной информации о структуре [8].

Заключение

Предложена модель однозатворного интерференционного *Т*-транзистора на квантовой проволоке, позволяющая учитывать механизмы рассеяния. С помощью разработанной модели проведен расчет вольт-амперных и частотных характеристик Т-транзисторов на восьми материалах с учетом рассеяния на удаленной заряженной примеси и неоднородностях поверхности. Размеры структуры были выбраны в соответствии с современными возможностями нанотехнологии. Показано, что при использовании материала с низкой эффективной массой электрона в квантовой проволоке возможно получение больших значений тока и максимальной рабочей частоты, чем в случае использования материалов с тяжелыми электронами. В то же время установлено, что учитываемые механизмы рассеяния сильнее влияют на характеристики транзисторов на материалах с низкой эффективной массой электрона в квантовой проволоке. Получено согласование результатов моделирования с экспериментальными данными, подтверждающее допустимость использования разработанной модели для теоретического исследования рассматриваемого типа транзисторов.

Работа выполнена при частичной финансовой поддержке Республиканских научно-технических программ "Информатика", "Низкоразмерные системы" и "Наноэлектроника".

Список литературы

- [1] S. Datta. Superlat. Microstruct., 6, 83 (1989).
- [2] S. Subramaniam, S. Bandyopadhyay, W. Porod. J. Appl. Phys., 68, 4861 (1990).
- [3] Ж.И. Алфёров. ФТП, 32, 3 (1998).
- [4] И.И. Абрамов, Ю.А. Берашевич, А.Л. Данилюк. ЖТФ, 69, 130 (1999).
- [5] J.I. Bergman, J. Chang, Y. Joo, B. Matinpour, J. Laskar, N.M. Jokerst, M.A. Brooke, B. Brar, E. Beam, III. IEEE Electron Dev. Lett., 20, 119 (1999).
- [6] И.И. Абрамов, Е.Г. Новик. Численное моделирование металлических одноэлектронных транзисторов (Минск, Бестпринт, 2000).
- [7] A.C. Irvine, Z.A.K. Durrani, H. Ahmed. J. Appl. Phys., 87, 8594 (2000).
- [8] J. Appenzeller, Ch. Schoer, Th. Schapers, A. v. d. Hart, A. Forster, B. Lengeler, H. Luth. Phys. Rev. B, 53, 9959 (1996).
- [9] A. Ghoshal, B. Mitra, K.P. Ghatak. Nuovo Cimento, 12, 891 (1990).
- [10] C.-C. Wu, C.-J. Lin. J. Appl. Phys., 83, 1390 (1998).
- [11] J. Motohisa, H. Sakaki. Appl. Phys. Lett., 60, 1315 (1992).
- [12] M.E. Levinshtein, S.L. Rumyantsev. Handbook Series on Semiconductor parameters (London, World Scientific, 1996).
- [13] В.М. Борздов, Ф.Ф. Комаров. Моделирование электрофизических свойств твердотельных слоистых структур интегральной электроники (Минск, Изд-во Белорус. унта, 1999).

Редактор Л.В. Беляков

Electrical characteristics of single-gate interference transistors based on various semiconductor materials

I.I. Abramov, A.I. Rahachou

Belarusian State University of Informatics and Radioelectronics, 220027 Minsk, Belarus

Abstract Results of theoretical investigations of electrical characteristics of single-gate interference T-transistors based on various semiconductor materials Si, Ga, GaAs, InAs, GaSb, InSb, GaP, InP are presented. An account of scattering mechanisms in a T-transistor model was carried out alongside with an estimate of their influence on characteristics for various materials. The adequacy of the model suggested has been checked by means of a comparison of the simulation results with experimental data, the results being obtained using simulation subsystem QW-NANODEV for quantum wires based devices.