Случайный потенциальный рельеф и примесная фотопроводимость компенсированного германия

© Ю.П. Дружинин, Е.Г. Чиркова[¶]

Институт радиотехники и электроники Российской академии наук, 101999 Москва, Россия

(Получена 19 апреля 2001 г. Принята к печати 24 апреля 2001 г.)

Предложена модель, описывающая спектральную зависимость фотопроводимости, нормированной на оптическое поглощение, для компенсированного германия при низкой температуре $kT \ll W$ (W — энергетический масштаб случайного потенциального рельефа, возникающего в результате кулоновского межпримесного взаимодействия). Подгонка модельного спектра под экспериментальный позволяет определить W и степень заполнения примесной зоны мелкого донора. Сделан вывод о слабой зависимости длины свободного пробега от энергии электрона в случайном потенциальном рельефе.

Спектр фотопроводимости компенсированного германия существенно отличается от спектра примесного оптического поглощения [1]. Это отличие особенно велико при температуре $kT \ll W$, где W — энергетический масштаб случайного потенциального рельефа, возникающего в результате кулоновского межпримесного взаимодействия.

Цель данной работы — анализ особенностей проводимости в случайном потенциальном рельефе на основе сравнения модельной и экспериментальных спектральных зависимостей фотопроводимости, нормированных на оптическое поглощение. Модельный спектр $\sigma(h\nu)$ рассчитывался при следующих предположениях.

1. Случайный потенциальный рельеф описывается гауссовой статистикой [2]:

$$P(U) = \frac{1}{(2\pi)^{1/2}W} \exp\left(-\frac{U^2}{2W^2}\right),$$
 (1)

где U — потенциальная энергия, P(U) — плотность вероятности случайного потенциала U, W — масштаб случайного потенциального рельефа.

2. Возбуждение электронов фотонами с энергией $h\nu$ происходит с энергетического уровня $E_{\rm F}$, где $E_{\rm F}$ — уровень Ферми, положение которого зависит от степени заполнения мелкого донора N_0/N_d (N_0 — концентрация нейтральной мелкой примеси, N_d — полная концентрация мелкой примеси). Энергия Ферми $E_{\rm F} < 0$, поскольку полная энергия E отсчитывается от уровня средней потенциальной энергии в зоне проводимости. В соответствии с (1) получаем

$$N_0/N_d = 0.5 \left(1 + \operatorname{erf} \frac{E_{\mathrm{F}} + E_i}{W}\right),$$

где E_i — энергия ионизации мелкой примеси, для сурьмы величина E_i равна 10 мэВ.

3. Спектральную зависимость фотопроводимости $\sigma(h\nu)$ можно записать в виде [3]

$$\sigma(h\nu) = \int_{-\infty}^{E_g} \left[S_0(E) + \sigma(E_p) \delta(E - E_p) \right] dE, \quad (2)$$

где *Е* — полная энергия электрона, *E*_p — энергетический порог подвижности (в данном случае считаем, что он совпадает с уровнем протекания), E_g — уровень энергии, на который забрасываются электроны под действием фотонов сигнального излучения $h\nu$: $h\nu = E_g - E_F$. В соответствии с (2) при $E_g < E_p$ фотопроводимость $\sigma(h\nu)$ должна обращаться в 0, а при $E_g > E_p$ скачком увеличивается до величины, равной $\sigma(E_p)$ [2], с последующим ростом, зависящим от вклада носителей $S_0(E)$ в проводимость. Будем считать, что $S_0(E)$ пропорционален доле объема кристалла V(E), доступной для классического движения. Естественно, такое допущение не справедливо при энергиях, близких к уровню протекания, но эти энергии соответствуют сравнительно малым долям доступного объема для трехмерного случая. Например, для гауссового распределения случайного потенциала $V(E_p) \approx 0.17$, а $E_p \approx -W$ [2]. Тогда $S_0(E)$ можно записать в виде

$$S_0(E) = 0.5 \left(1 + \operatorname{erf} \frac{E}{W} \right).$$

Для спектральной зависимости фотопроводимости получится следующее выражение (считаем $\sigma(E_p) = 0$, $E_p = -\infty$, обоснованность этих допущений обсудим далее):

$$\sigma(h\nu) = (h\nu + E_{\rm F})S_0(h\nu + E_{\rm F}) + W^2P(h\nu + E_{\rm F}).$$

Результаты подгонки модельных спектров под экспериментальные для 2-х образцов с разными уровнем легирования и степенью компенсации представлены на рис. 1 и 2. В образце 1 (см. таблицу) медь находится в двухи трехзарядном состояниях с примерно равными кон-

[¶] E-mail: chi@cplire.ru

№ образца	N_d , cm ⁻³	$N_{ m Cu}$, см $^{-3}$	N_0/N_d	N_0/N_d	<i>W</i> , мэВ	<i>W</i> , мэВ
			оптика	подгонка	расчет	подгонка
1	$1.5 \cdot 10^{15}$	$6\cdot 10^{14}$	0.13 0.2 0.3	0.11 0.16 0.28	2.9	3.0
2	$1.5\cdot10^{15}$	$4.3\cdot10^{14}$	0.14	0.14	4.5	4.1

Параметры исследованных образцов (экспериментальные, оценочные и подгоночные)

центрациями N₂ и N₃ (при высоких температурах). При низкой температуре $T = 4.2 \,\mathrm{K}$ с помощью подсветки, под действием которой электроны с трехзарядной меди забрасываются в зону проводимости, происходит частичная нейтрализация мелкого донора. Степень нейтрализации в некоторых пределах регулируется изменением интенсивности этой внешней подсветки (см. таблицу). В образце 2 все атомы меди находятся в трехзарядном состоянии и при низкой температуре степень заполнения мелкого донора $N_0/N_d \approx 0.14$. Значения используемых численных параметров подгонки W и N_0/N_d приведены в таблице. Отметим, что величина N₀/N_d изменяет положение линейного участка спектральной зависимости фотопроводимости (рис. 1, $h\nu - E_i > W$), а значение W влияет на ход суперлинейного участка (рис. 2, $-W < h\nu - E_i < W).$

Рис. 1. Сравнение экспериментальных (1-4) и модельных (сплошные линии) спектров фотопроводимости Ge(Cu:Sb): I-3 — образец 1, разные подсветки, $N_0 \approx 1.5 \cdot 19^{15}$ см⁻³, $N_{Cu} \approx 6 \cdot 10^{14}$ см⁻⁴; 4 — образец 2, $N_d \approx 1.5 \cdot 10^{15}$ см⁻³, $N_{Cu} \approx 4.3 \cdot 10^{14}$ см⁻³.

Для данных образцов энергетический масштаб случайного потенциального рельефа W можно оценить следующим способом. В работе [4] были получены значения E_p и V_p для компенсированного полупроводника с одноза-

Физика и техника полупроводников, 2001, том 35, вып. 10

рядными примесями. Для $N_0/N_d < 0.2$ величина V_p изменялась в диапазоне 0.16-0.18, т. е. близко к значению для гауссового потенциала [2], для которого известно, что $E_p \approx -W$. Чтобы применить этот результат для наших образцов, необходимо учесть многозарядность атомов меди. Для этого при оценке масштаба крупномасштабного рельефа в асимптотическом приближении $N_0/N_d \ll 1$, следуя [2], необходимо использовать $N_{\rm eff} = N_d + Z^2 N_{\rm Cu}$, где Z = 2 для образца 1 и Z = 3 для образца 2 (для однозарядных примесей Z = 1 и, соответственно, $N_{\text{eff}} = 2N_d$). Поскольку в асимптотическом пределе W зависит от $N_{\rm eff}$ степенным образом с показателем 2/3, а при малых концентрациях экранирующих центров результаты работ [2] и [4] должны совпадать, для наших образцов получаем поправочный на многозарядность коэффициент А₇ $(W_Z = A_Z W)$: $A_2 = 1.2$ для образца 1 и $A_3 = 1.6$ для образца 2. Таким образом, многозарядность ощутимо увеличивает энергетический масштаб случайного потенциального рельефа (пространственный масштаб также увеличивается). В результате расчетные значения W оказались близки к подгоночным (см. таблицу). Кроме того отметим, что в асимптотическом пределе интенсивность подсветки не изменяет крупномасштабный рельеф, поскольку не меняется суммарная концентрация

Рис. 2. То же, что и на рис. 1, но в полулогарифмическом масштабе.

экранирующих центров ($N_3 + N_0 = \text{const}$), и это также подтверждается результатами подгонки (или, наоборот, вывод асимптотического рассмотрения подтверждается экспериментом). Как видно из таблицы, расчетная степень заполнения N_0/N_d оказалась близкой к результатам оптических измерений.

Необходимо отметить, что для образца 1 экспериментальные кривые достаточно хорошо совпадают с подгоночными во всем спектральном диапазоне, а для образца 2 наблюдается отклонение подгонки от эксперимента при $h\nu \approx 10$ мэВ, что естественно связать с влиянием порога подвижности E_p . Тем не менее в полном объеме порог подвижности в эксперименте не проявляется (нет обратно пропорционального kT экспоненциального спада в спектре нормированной на поглощение фотопроводимости). Возможной причиной этого служили 2 экспериментальных обстоятельства: 1) измерения велись при достаточно сильном электрическом поле, искажающем бесполевые процессы протекания; 2) из-за оптической перезарядки распределение электронов по мелкой примеси с уровнем энергии выше Е_F отличается от фермиевского. Удивительную близость подгоночных спектров к экспериментальным в области малых энергий фотонов для образца 1 необходимо признать случайной и возникающей, по-видимому, из-за неадекватного описания "хвостов" плотности вероятности случайного потенциала как гауссовских. Например, при квазклассическом подходе вклад высоковозбужденных состояний мелкой примеси дает асимпототический спад плотности электронных состояний пропорционально $E^{-5/2}$ [5], что значительно превышает спад для нормального (гауссового) потенциала такой же дисперсии (определяется как средний квадрат потенциальной энергии для какоголибо распределения случайной величины). Поскольку у образца 2 крупномасштабные составляющие случайного потенциала играют более значительную роль по сравнению с образцом 1 из-за большей степени компенсации и многозарядности рельефообразующих примесей, то и описываться нормальным распределением он будет лучше, что, правда, приводит к отличию подгонки от эксперимента вблизи порога подвижности. Это, однако, уже является следствием модельного описания проводимости в рельефе, а не статических свойств рельефа.

Проводимость неоднородного материала, у которого масштаб неоднородности меньше или порядка длины свободного пробега, может быть определена по формуле Кубо–Гринвуда [6]. Применительно к вычислению спектральной зависимости фотопроводимости (2) это приводит к следующим выражениям для $S_0(E)$ и $\sigma(E_p)$:

$$S_0(E) = \frac{d(g^2L)}{dE} f(E),$$

$$\sigma(E_p) = g^2(E_p)L(E_p)f(E_p),$$

- / 2

где g = g(E) — средняя плотность электронных состояний в зоне проводимости; f(E) — функция распределения электронов, определенная при $kT \ll W$, например, в

работе [5]; L = L(E) — величина, пропорциональная среднему квадрату оператора скорости, который при больших энергиях (т.е. вне потенциального рельефа) в свою очередь пропорционален длине свободного пробега [6]. В рельефе (-W < E < W) поведение L(E) неизвестно. Ниже значения E_p величина L(E) обращается в 0, причем считается, что в классическом потенциале обращение в 0 происходит непрерывно вблизи уровня протекания (в данном случае совпадает с порогом подвижности) в узком энергетическом слое [2]. Вне рельефа, при рассеянии импульса на заряженной примеси, величина $S_0(E)$ не зависит от энергии [3]. Это приводит к линейной зависимости фотопроводимости от энерии фотонов сигнального излучения $h\nu$, что и наблюдается в экспериментальных кривых. Можно предположить, что в рельефе величина L(E) практически не изменяется. Поскольку основная энергетическая зависимость для плотности состояний и функции распределения содержится в доле доступного объема V(E) [2,5], то, считая проводимость на пороге подвижности $\sigma(E_p)$ малой (при подгонке вообще пренебрегая самим фактом его существования), можно $S_0(E)$ определить как величину, пропорциональную V(E).

Учет конечности величин E_p и $\sigma(E_p)$ привел бы к появлению дополнительных слагаемых в выражении для спектральной зависимости фотопроводимости $\sigma(h\nu)$. Эти слагаемые изменили бы энергию отсечки линейного участка, что соответствует погрешности в определении степени заполнения мелкого донора, а также исказили бы спектральную зависимость фотопроводимости при энергиях фотонов, соответствующих забросу носителей заряда вблизи от порога подвижности Е_p. Однако предположение о пропорциональности $S_0(E)$ доле доступного объема заведомо "не работает" при этих энергиях и поэтому при подгонке соответствующий участок спектра нами не рассматривался. Что касается погрешности в определении степени заполнения мелкого донора из-за учета конечности величин $\sigma(E_p)$ и E_p , то необходимо сделать следующее замечание. Поскольку отношения N_0/N_d в результате подгонки оказались близкими к экспериментально определенным из оптических измерений, можно считать целесообразным подход, при котором энергетический порог подвижности Е_p полагается равным $-\infty$, а $\sigma(E_n) = 0$.

Близость подгоночного параметра W к соответствующей величине, определенной из расчета, означает, понашему мнению, слабую зависимость от энергии носителя среднего квадрата оператора скорости в рельефе. Тем не менее некоторое отличие в величинах масштаба потенциального рельефа для образца 2, у которого, как уже отмечалось выше, крупномасштабная часть рельефа более значима по сравнению со среднемасштабной, свидетельствует, по-видимому, о более сильной энергетической зависимости среднего квадрата оператора скорости в рельефе. Сдвиг участка линейной зависимости $\sigma(h\nu)$ при увеличении интенсивности коротковолновой подсветки (см. рис. 1) позволяет утверждать, что в условиях спектроскопического эксперимента перезарядка мелкой примеси мала и распределение носителей по мелкому донору близко к фермиевскому.

Итак, предложено модельное описание спектральной зависимости фотопроводимости, нормированной на поглощение, для компенсированного германия при низкой температуре. Близость подгоночных параметров этого модельного описания к экспериментально определенным или независимо рассчитанным значениям позволяет сделать вывод о слабой энергетической зависимости в рельефе среднего квадрата оператора скорости (или длины свободного пробега). Представляется интересной и обратная задача, имея достоверную информацию об этой величине, из сравнения модельного и экспериментального спектров фотопроводимости, нормированной на поглощение, более точно определить характеристики рельефа, например его энергетический масштаб.

Авторы признательны В.Н. Губанкову за поддержку в работе и обсуждение результатов.

Список литературы

- [1] Ю.П. Дружинин, Е.Г. Чиркова. ФТП, 29, 1575 (1995).
- [2] Б.И. Шкловский, А.Л. Эфрос. Электронные свойства легированных полупроводников (М., Наука, 1979).
- [3] Ш.М. Коган. ФТП, 11, 1979 (1977).
- [4] Нгуен Ван Лиен, Б.И. Шкловский. ФТП, 13, 1763 (1979).
- [5] В. Карпус, В.И. Перель. ФТП, 16, 2129 (1982).
- [6] Н. Мотт, Э. Дэвис. Электронные процессы в некристаллических веществах (М., Мир, 1982).

Редактор Т.А. Полянская

The random potential relief and impurity photoconductivity of compensated germanium

Yu.P. Druzhinin, E.G. Chirkova

Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 101999 Moscow, Russia

Abstract A model has been proposed of the photoconductivity spectrum normalized to optical absorption of compensated germanium at a low temperature $kT \ll W$ (*W* being energy scale of the random potential created by the Coulomb impurity interaction). *W* and the occupation ratio of a shallow impurity band has been determined from a model adjusted for the experimental spectrum. The conclusion has been drawn that the electron energy dependence of the mean free path in the random potential relief is weak.